Design of A Four-Channel Crossover in Ridge-Gap-Waveguide Technology for Millimeter-Wave Applications

被引:0
|
作者
Liu, Yang [1 ]
Lian, Ji-Wei [2 ,3 ]
Wei, Chuhan [1 ]
Geng, Chun [4 ]
Ding, Dazhi [2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Elect & Opt Engn, Nanjing 210094, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Microelect Sch Integrated Circuits, Nanjing 210094, Peoples R China
[3] Southeast Univ, State Key Lab Millimeter Waves, Nanjing 210096, Peoples R China
[4] Nanjing Univ Sci & Technol, Qian Xuesen Coll, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
Crossover; RGW; millimeter wave;
D O I
10.1109/GSMM61775.2024.10553096
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a novel four-channel crossover is proposed utilizing ridge-gap-waveguide (RGW) technology, which can address the crossing of four channels simultaneously. The RGW structure employs air as the medium, contributing to low dielectric loss. The simulated results display that the minimum insertion loss is 0.52dB, the reflection and isolation coefficients are less than -15dB from 27.8 GHz to 28.3 GHz with 28 GHz as the center frequency.
引用
收藏
页码:48 / 49
页数:2
相关论文
共 50 条
  • [1] Micromachined ridge gap waveguide and resonator for millimeter-wave applications
    Rahiminejad, S.
    Zaman, A. U.
    Pucci, E.
    Raza, H.
    Vassilev, V.
    Haasl, S.
    Lundgren, P.
    Kildal, P. -S.
    Enoksson, P.
    SENSORS AND ACTUATORS A-PHYSICAL, 2012, 186 : 264 - 269
  • [2] Substrateless Amplifier Module Realized by Ridge Gap Waveguide Technology for Millimeter-Wave Applications
    Ahmadi, Behzad
    Banai, Ali
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2016, 64 (11) : 3623 - 3630
  • [3] Design of Micromachined Ridge Gap Waveguides for Millimeter-Wave Applications
    Rahiminejad, S.
    Zaman, A. U.
    Pucci, E.
    Raza, H.
    Vassilev, V.
    Haasl, S.
    Lundgren, P.
    Kildal, P. -S
    Enoksson, P.
    EUROSENSORS XXV, 2011, 25
  • [4] A flexible low insertion-loss wideband millimeter-wave crossover based on ridge gap waveguide technology
    Wang, Jie
    Wu, Yongle
    Yang, Yuhao
    Wang, Weimin
    INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, 2022, 32 (06)
  • [5] Rotman Lens with Ridge Gap Waveguide Technology for Millimeter Wave Applications
    Carrera Suarez, Fernando
    Navarro Mendez, Diana
    Baquero-Escudero, Mariano
    2013 7TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2013, : 4006 - 4009
  • [6] Millimeter-Wave Three-Way Coupler Based on Ridge Gap Waveguide Technology
    Wei, Chuhan
    Lian, Ji-Wei
    Liu, Yang
    Geng, Chun
    Ding, Dazhi
    2024 15TH GLOBAL SYMPOSIUM ON MILLIMETER-WAVES & TERAHERTZ, GSMM, 2024, : 180 - 182
  • [7] Wideband 4 x 4 Butler Matrix in the Printed Ridge Gap Waveguide Technology for Millimeter-Wave Applications
    Afifi, Islam
    Sebak, Abdel-Razik
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2020, 68 (11) : 7670 - 7675
  • [8] Gap Waveguide Technology for Millimeter-Wave Antenna Systems
    Rajo-Iglesias, Eva
    Ferrando-Rocher, Miguel
    Zaman, Ashraf Uz
    IEEE COMMUNICATIONS MAGAZINE, 2018, 56 (07) : 14 - 20
  • [9] Gap Waveguide Structure in LTCC for Millimeter-Wave Applications
    Buendia, Cristina Arenas
    Gallee, Francois
    Valero-Nogueira, Alejandro
    Person, Christian
    2014 8TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2014, : 982 - +
  • [10] A Power Divider/Combiner Realized by Ridge Gap Waveguide Technology for Millimeter Wave Applications
    Ahmadi, B.
    Banai, A.
    2016 FOURTH INTERNATIONAL CONFERENCE ON MILLIMETER-WAVE AND TERAHERTZ TECHNOLOGIES (MMWATT), 2016, : 5 - 8