Translocation and Confinement of Tetraamines in Adaptable Microporous Cavities

被引:1
|
作者
Rubio-Gaspar, Ana [1 ]
Misturini, Alechania [1 ]
Millan, Reisel [2 ]
Almora-Barrios, Neyvis [1 ]
Tatay, Sergio [1 ]
Bon, Volodymyr [3 ]
Bonneau, Mickaele [4 ]
Guillerm, Vincent [4 ]
Eddaoudi, Mohamed [4 ]
Navalon, Sergio [5 ]
Kaskel, Stefan [3 ]
Armentano, Donatella [6 ]
Marti-Gastaldo, Carlos [1 ]
机构
[1] Univ Valencia, Funct Inorgan Mat Team, Inst Ciencia Mol ICMol, C-Catedrat Jose Beltran 2, Paterna 46980, Spain
[2] Univ Politecn Valencia, Consejo Super Invest Cient CSIC, Inst Tecnol Quim ITQ, Valencia 46022, Spain
[3] Tech Univ Dresden, Dept Inorgan Chem, D-01069 Dresden, Germany
[4] King Abdullah Univ Sci & Technol, Adv Membranes & Porous Mat Ctr, Div Phys Sci & Engn, Funct Mat Design Discovery & Dev Res Grp, Thuwal, Saudi Arabia
[5] Univ Politecn Valencia, Dept Quim, Valencia 46022, Spain
[6] Univ Calabria, Dipartimento Chim & Tecnol Chim CTC, I-87036 Arcavacata Di Rende, Cosenza, Italy
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
tetraamine; translocation; confinement; cluster chemistry; pore reconfiguration; nanoporous cavities; METAL-ORGANIC FRAMEWORK; CARBON-DIOXIDE; CO2; CAPTURE; FLUE-GAS; CHEMISTRY; ADSORPTION; SEPARATION; CLUSTERS; BINDING; AIR;
D O I
10.1002/anie.202402973
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metal-Organic Frameworks can be grafted with amines by coordination to metal vacancies to create amine-appended solid adsorbents, which are being considered as an alternative to using aqueous amine solutions for CO2 capture. In this study, we propose an alternative mechanism that does not rely on the use of neutral metal vacancies as binding sites but is enabled by the structural adaptability of heterobimetallic Ti2Ca2 clusters. The combination of hard (Ti4+) and soft (Ca2+) metal centers in the inorganic nodes of the framework enables MUV-10 to adapt its pore windows to the presence of triethylenetetramine molecules. This dynamic cluster response facilitates the translocation and binding of tetraamine inside the microporous cavities to enable the formation of bis-coordinate adducts that are stable in water. The extension of this grafting concept from MUV-10 to larger cavities not restrictive to CO2 diffusion will complement other strategies available for the design of molecular sorbents for decarbonization applications. We introduce an alternative to the use of open metal vacancies in the design of amine-appended adsorbents based on the use of secondary building units combining of hard and soft metal sites. This endows MUV-10 with a flexible response to the uptake of tetraamines that facilitates their translocation into the microporous cavities of the framework to form stable bis-coordinate adducts that can remain stable in water. image
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Polymer translocation into cavities: Effects of confinement geometry, crowding, and bending rigidity on the free energy
    Polson, James M.
    Heckbert, David R.
    PHYSICAL REVIEW E, 2019, 100 (01)
  • [2] ATOM CONFINEMENT IN HELICOIDAL CAVITIES
    GONZALESPLATAS, J
    BRETON, J
    GIRARDET, C
    JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (04): : 3389 - 3394
  • [3] Acoustic confinement in superlattice cavities
    Garcia-Sanchez, Daniel
    Deleglise, Samuel
    Thomas, Jean-Louis
    Atkinson, Paola
    Lagoin, Camille
    Perrin, Bernard
    PHYSICAL REVIEW A, 2016, 94 (03)
  • [4] Quantification of the confinement effect in microporous materials
    Garcia, Edder J.
    Perez-Pellitero, Javier
    Jallut, Christian
    Pirngruber, Gerhard D.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (15) : 5648 - 5657
  • [5] Polymer translocation: Effects of confinement
    Dwivedi, Manish
    Rudra, Sumitra
    Kumar, Sanjay
    PHYSICAL REVIEW E, 2024, 109 (02)
  • [6] Plasmonic Cavities for Enhanced Optical Confinement
    Ahmed, W. W.
    Alsunaidi, M. A.
    2013 SAUDI INTERNATIONAL ELECTRONICS, COMMUNICATIONS AND PHOTONICS CONFERENCE (SIECPC), 2013,
  • [7] Microstar cavities: An alternative concept for the confinement of light
    Kullig, Julius
    Jiang, Xuefeng
    Yang, Lan
    Wiersig, Jan
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [8] Dynamics of polymer translocation into an anisotropic confinement
    Zhang, Kehong
    Luo, Kaifu
    SOFT MATTER, 2013, 9 (06) : 2069 - 2075
  • [9] Strong light confinement in microporous photonic silicon structures
    Lérondel, G
    Reece, P
    Bruyant, A
    Gal, M
    ENGINEERED POROSITY FOR MICROPHOTONICS AND PLASMONICS, 2004, 797 : 15 - 20
  • [10] The confinement factor: A thermodynamic parameter to characterize microporous adsorbents
    Denayer, JFM
    Baron, GV
    ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY, 2005, 11 (Suppl 1): : 85 - 90