Norm-guided Adaptive Visual Embedding for Zero-Shot Sketch-Based Image Retrieval

被引:0
|
作者
Wang, Wenjie [1 ]
Shi, Yufeng [1 ]
Chen, Shiming [1 ]
Peng, Qinmu [1 ]
Zheng, Feng [3 ]
You, Xinge [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Elect Informat & Commun, Wuhan, Peoples R China
[2] Huazhong Univ Sci & Technol, Shenzhen Res Inst, Wuhan, Peoples R China
[3] Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Zero-shot sketch-based image retrieval (ZS-SBIR), which aims to retrieve photos with sketches under the zero-shot scenario, has shown extraordinary talents in real-world applications. Most existing methods leverage language models to generate class-prototypes and use them to arrange the locations of all categories in the common space for photos and sketches. Although great progress has been made, few of them consider whether such pre-defined prototypes are necessary for ZS-SBIR, where locations of unseen class samples in the embedding space are actually determined by visual appearance and a visual embedding actually performs better. To this end, we propose a novel Norm-guided Adaptive Visual Embedding (NAVE) model, for adaptively building the common space based on visual similarity instead of language-based pre-defined prototypes. To further enhance the representation quality of unseen classes for both photo and sketch modality, modality norm discrepancy and noisy label regularizer are jointly employed to measure and repair the modality bias of the learned common embedding. Experiments on two challenging datasets demonstrate the superiority of our NAVE over state-of-the-art competitors.
引用
收藏
页码:1106 / 1112
页数:7
相关论文
共 50 条
  • [1] Zero-shot Sketch-based Image Retrieval with Adaptive Balanced Discriminability and Generalizability
    Tian, Jialin
    Xu, Xing
    Cao, Zuo
    Zhang, Gong
    Shen, Fumin
    Yang, Yang
    PROCEEDINGS OF THE 2023 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2023, 2023, : 407 - 415
  • [2] Generative Model for Zero-Shot Sketch-Based Image Retrieval
    Verma, Vinay Kumar
    Mishra, Aakansha
    Mishra, Ashish
    Rai, Piyush
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 704 - 713
  • [3] Triplet Bridge for Zero-Shot Sketch-Based Image Retrieval
    Zheng, Jiahao
    Tang, Yu
    Wu, Dapeng
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024,
  • [4] An efficient framework for zero-shot sketch-based image retrieval
    Tursun, Osman
    Denman, Simon
    Sridharan, Sridha
    Goan, Ethan
    Fookes, Clinton
    PATTERN RECOGNITION, 2022, 126
  • [5] Energy-Guided Feature Fusion for Zero-Shot Sketch-Based Image Retrieval
    Ren, Hao
    Zheng, Ziqiang
    Lu, Hong
    NEURAL PROCESSING LETTERS, 2022, 54 (06) : 5711 - 5720
  • [6] Energy-Guided Feature Fusion for Zero-Shot Sketch-Based Image Retrieval
    Hao Ren
    Ziqiang Zheng
    Hong Lu
    Neural Processing Letters, 2022, 54 : 5711 - 5720
  • [7] Transferable Coupled Network for Zero-Shot Sketch-Based Image Retrieval
    Wang, Hao
    Deng, Cheng
    Liu, Tongliang
    Tao, Dacheng
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 9181 - 9194
  • [8] Sharing Model Framework for Zero-Shot Sketch-Based Image Retrieval
    Ho, Yi-Hsuan
    Way, Der-Lor
    Shih, Zen-Chung
    COMPUTER GRAPHICS FORUM, 2023, 42 (07)
  • [9] Contour detection network for zero-shot sketch-based image retrieval
    Zhang, Qing
    Zhang, Jing
    Su, Xiangdong
    Bao, Feilong
    Gao, Guanglai
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (06) : 6781 - 6795
  • [10] Zero-Shot Everything Sketch-Based Image Retrieval, and in Explainable Style
    Lin, Fengyin
    Li, Mingkang
    Li, Da
    Hospedales, Timothy
    Song, Yi-Zhe
    Qi, Yonggang
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 23349 - 23358