A Differential Evolution-based Pseudotime Estimation Method for Single-cell Data

被引:0
|
作者
Hia, Nazifa Tasnim [1 ,2 ]
Emu, Ishrat Jahan [1 ]
Ibrahim, Muhammad [3 ]
Ahmed, Sumon [1 ]
机构
[1] Univ Dhaka, Inst Informat Technol, Dhaka 1000, Bangladesh
[2] Univ Liberal Arts Bangladesh, Dept Comp Sci & Engn, Dhaka 1207, Bangladesh
[3] Univ Dhaka, Dept Comp Sci & Engn, Dhaka 1000, Bangladesh
关键词
Pseudotime estimation; trajectory inference; single-; cell; differential evolution; RNA-seq; RNA-SEQ;
D O I
10.14569/IJACSA.2024.01506150
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The analysis of single-cell genomics data creates an intriguing opportunity for researchers to examine the complex biological system more closely but is challenging due to inherent biological and technical noise. One popular approach involves learning a lower dimensional manifold or pseudotime trajectory through the data that can capture the primary sources of variation in the data. A smooth function of pseudotime then can be used to align gene expression patterns through the lineages in the trajectory which later facilitates downstream analysis such as heterogeneous cell type identification. Here, we propose a differential evolution based pseudotime estimation method. The model operates on continuous search space and allows easy integration of the cell capture time information in the inference process. The suitability of the proposed model is investigated by applying it on benchmarking single-cell data sets collected from different organisms using different assaying techniques. The experimental result shows the model's capability of producing plausible biological insights about cell ordering which makes it an appealing choice for pseudoitme estimation using single-cell transcriptome data.
引用
收藏
页码:1504 / 1513
页数:10
相关论文
共 50 条
  • [1] scSTEM: clustering pseudotime ordered single-cell data
    Song, Qi
    Wang, Jingtao
    Bar-Joseph, Ziv
    GENOME BIOLOGY, 2022, 23 (01)
  • [2] scSTEM: clustering pseudotime ordered single-cell data
    Qi Song
    Jingtao Wang
    Ziv Bar-Joseph
    Genome Biology, 23
  • [3] A robust and accurate single-cell data trajectory inference method using ensemble pseudotime
    Zhang, Yifan
    Tran, Duc
    Nguyen, Tin
    Dascalu, Sergiu M.
    Harris, Frederick C.
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [4] A robust and accurate single-cell data trajectory inference method using ensemble pseudotime
    Yifan Zhang
    Duc Tran
    Tin Nguyen
    Sergiu M. Dascalu
    Frederick C. Harris
    BMC Bioinformatics, 24
  • [5] Parameter estimation for chaotic systems with and without noise using differential evolution-based method
    李念强
    潘炜
    闫连山
    罗斌
    徐明峰
    江宁
    Chinese Physics B, 2011, (06) : 76 - 81
  • [6] Parameter estimation for chaotic systems with and without noise using differential evolution-based method
    Li Nian-Qiang
    Pan Wei
    Yan Lian-Shan
    Luo Bin
    Xu Ming-Feng
    Jiang Ning
    CHINESE PHYSICS B, 2011, 20 (06)
  • [7] Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics
    Street, Kelly
    Risso, Davide
    Fletcher, Russell B.
    Das, Diya
    Ngai, John
    Yosef, Nir
    Purdom, Elizabeth
    Dudoit, Sandrine
    BMC GENOMICS, 2018, 19
  • [8] Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics
    Kelly Street
    Davide Risso
    Russell B. Fletcher
    Diya Das
    John Ngai
    Nir Yosef
    Elizabeth Purdom
    Sandrine Dudoit
    BMC Genomics, 19
  • [9] CCPE: cell cycle pseudotime estimation for single cell RNA-seq data
    Liu, Jiajia
    Yang, Mengyuan
    Zhao, Weiling
    Zhou, Xiaobo
    NUCLEIC ACIDS RESEARCH, 2022, 50 (02) : 704 - 716
  • [10] A statistical framework for differential pseudotime analysis with multiple single-cell RNA-seq samples
    Hou, Wenpin
    Ji, Zhicheng
    Chen, Zeyu
    Wherry, E. John
    Hicks, Stephanie C.
    Ji, Hongkai
    NATURE COMMUNICATIONS, 2023, 14 (01)