共 50 条
Predicting responses to climate change using a joint species, spatially dependent physiologically guided abundance model
被引:1
|作者:
Custer, Christopher A.
[1
]
North, Joshua S.
[2
]
Schliep, Erin M.
[3
]
Verhoeven, Michael R.
[4
]
Hansen, Gretchen J. A.
[4
]
Wagner, Tyler
[5
]
机构:
[1] Penn State Univ, Dept Ecosyst Sci & Management, Penn Cooperat Fish & Wildlife Res Unit, University Pk, PA 16802 USA
[2] Lawrence Berkeley Natl Lab, Climate & Ecosyst Sci Div, Berkeley, CA USA
[3] North Carolina State Univ, Dept Stat, Raleigh, NC USA
[4] Univ Minnesota, Dept Fisheries Wildlife & Conservat Biol, St Paul, MN USA
[5] Penn State Univ, Penn Cooperat Fish & Wildlife Res Unit, US Geol Survey, University Pk, PA USA
来源:
基金:
美国国家科学基金会;
关键词:
joint species;
poikilotherms;
spatial dependence;
thermal response;
FRESH-WATER;
LARGEMOUTH BASS;
AUTOCORRELATION;
IMPACTS;
GROWTH;
COOCCURRENCE;
COMMUNITIES;
LIMITATION;
ECTOTHERMS;
VEGETATION;
D O I:
10.1002/ecy.4362
中图分类号:
Q14 [生态学(生物生态学)];
学科分类号:
071012 ;
0713 ;
摘要:
Predicting the effects of warming temperatures on the abundance and distribution of organisms under future climate scenarios often requires extrapolating species-environment correlations to climatic conditions not currently experienced by a species, which can result in unrealistic predictions. For poikilotherms, incorporating species' thermal physiology to inform extrapolations under novel thermal conditions can result in more realistic predictions. Furthermore, models that incorporate species and spatial dependencies may improve predictions by capturing correlations present in ecological data that are not accounted for by predictor variables. Here, we present a joint species, spatially dependent physiologically guided abundance (jsPGA) model for predicting multispecies responses to climate warming. The jsPGA model uses a basis function approach to capture both species and spatial dependencies. We apply the jsPGA model to predict the response of eight fish species to projected climate warming in thousands of lakes in Minnesota, USA. By the end of the century, the cold-adapted species was predicted to have high probabilities of extirpation across its current range-with 10% of lakes currently inhabited by this species having an extirpation probability >0.90. The remaining species had varying levels of predicted changes in abundance, reflecting differences in their thermal physiology. Though the model did not identify many strong species dependencies, the variation in estimated spatial dependence across species suggested that accounting for both dependencies was important for predicting the abundance of these fishes. The jsPGA model provides a new tool for predicting changes in the abundance, distribution, and extirpation probability of poikilotherms under novel thermal conditions.
引用
收藏
页数:16
相关论文