A machine learning predictive model for recurrence of resected distal cholangiocarcinoma: Development and validation of predictive model using artificial intelligence

被引:0
|
作者
Perez, Marc [1 ]
Hansen, Carsten Palnaes [2 ]
Burdio, Fernando [1 ]
Sanchez-Velazquez, Patricia [1 ]
Giuliani, Antonio [3 ]
Lancellotti, Francesco [4 ]
de Liguori-Carino, Nicola [4 ]
Malleo, Giuseppe [5 ]
Marchegiani, Giovanni [6 ]
Podda, Mauro [7 ]
Pisanu, Adolfo [7 ]
De Luca, Giuseppe Massimiliano [8 ]
Anselmo, Alessandro [9 ]
Siragusa, Leandro [18 ]
Burgdorf, Stefan Kobbelgaard [2 ]
Tschuor, Christoph [2 ]
Cacciaguerra, Andrea Benedetti [10 ]
Koh, Ye Xin [11 ]
Masuda, Yoshio [11 ]
Xuan, Mark Yeo Hao [12 ]
Seeger, Nico [12 ]
Breitenstein, Stefan [12 ]
Grochola, Filip Lukasz [12 ]
Di Martino, Marcello [13 ]
Secanella, Luis [14 ]
Busquets, Juli [14 ]
Dorcaratto, Dimitri [15 ]
Mora-Oliver, Isabel [15 ]
Ingallinella, Sara [16 ]
Salvia, Roberto [5 ]
Abu Hilal, Mohammad [17 ]
Aldrighetti, Luca [16 ]
Ielpo, Benedetto [1 ]
机构
[1] Univ Pompeu Fabra, Hosp Mar, Hepato Pancreato Biliary Div, Barcelona, Spain
[2] Univ Copenhagen, Dept Surg, Rigshosp, Copenhagen, Denmark
[3] San Giuseppe Moscati Hosp, Unit Gen Surg, Aversa, Italy
[4] Univ Manchester, Manchester Royal Infirm, Dept Hepatopancreato Biliary Surg, Manchester, England
[5] Univ Verona Hosp Trust, Pancreas Inst, Unit Gen & Pancreat Surg, Verona, Italy
[6] Padova Univ, Dept Surg Oncol & Gastroenterol DiSCOG, Hepato Biliary Pancreat HPB & Liver Transplant Sur, Padua, Italy
[7] Univ Cagliari, Dept Surg Sci, Cagliari, Italy
[8] Univ Bari A Moro, Dept Biomed Sci & Human Oncol, Unit Acad Gen Surg V Bonomo, Bari, Italy
[9] Policlin Tor Vergata, Dept Surg, HPB & Transplant Surg Unit, Rome, Italy
[10] Polytech Univ Marche, Dept Clin & Expt Med, HPB Surg & Transplantat Unit, Ancona, Italy
[11] Singapore Gen Hosp, Dept Hepatopancreatobiliary & Transplant Surg, Singapore, Singapore
[12] Cantonal Hosp Winterthur, Dept Surg, HPB Unit, Winterthur, Switzerland
[13] Univ Piemonte Orientale, Dept Hlth Sci, Novara, Italy
[14] Univ Hosp Bellvitge, Barcelona, Spain
[15] Univ Valencia, Hosp Clin Univ, Biomed Res Inst INCLIVA, Dept Gen Surg, Valencia, Spain
[16] IRCCS, San Raffaele Sci Inst, Milan, Italy
[17] Fdn Poliambulanza, Dept Surg, Brescia, Italy
[18] IRCCS, Human Res Hosp, Div Colon & Rectal Surg, Milan, Italy
来源
EJSO | 2024年 / 50卷 / 07期
关键词
Distal cholangiocarcinoma; Lymph node ratio; Machine learning; Pancreatoduodenectomy; Prognosis; PROGNOSTIC-FACTORS; SURVIVAL; METAANALYSIS;
D O I
10.1016/j.ejso.2024.108375
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Introduction: Distal Cholangiocarcinoma (dCCA) represents a challenge in hepatobiliary oncology, that requires nuanced post -resection prognostic modeling. Conventional staging criteria may oversimplify dCCA complexities, prompting the exploration of novel prognostic factors and methodologies, including machine learning algorithms. This study aims to develop a machine learning predictive model for recurrence after resected dCCA. Material and methods: This retrospective multicentric observational study included patients with dCCA from 13 international centers who underwent curative pancreaticoduodenectomy (PD). A LASSO -regularized Cox regression model was used to feature selection, examine the path of the coefficient and create a model to predict recurrence. Internal and external validation and model performance were assessed using the C -index score. Additionally, a web application was developed to enhance the clinical use of the algorithm. Results: Among 654 patients, LNR (Lymph Node Ratio) 15, neural invasion, N stage, surgical radicality, and differentiation grade emerged as significant predictors of disease -free survival (DFS). The model showed the best discrimination capacity with a C -index value of 0.8 (CI 95 %, 0.77%-0.86 %) and highlighted LNR15 as the most influential factor. Internal and external validations showed the model's robustness and discriminative ability with an Area Under the Curve of 92.4 % (95 % CI, 88.2%-94.4 %) and 91.5 % (95 % CI, 88.4%-93.5 %), respectively. The predictive model is available at https://imim.shinyapps.io/LassoCholangioca/. Conclusions: This study pioneers the integration of machine learning into prognostic modeling for dCCA, yielding a robust predictive model for DFS following PD. The tool can provide information to both patients and healthcare providers, enhancing tailored treatments and follow-up.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] A Machine Learning Predictive Model for Recurrence of Resected Distal Cholangiocarcinoma
    Ielpo, Benedetto
    JOURNAL OF THE AMERICAN COLLEGE OF SURGEONS, 2024, 239 (05) : S269 - S270
  • [2] Development and Validation of a Predictive Model for Coronary Artery Disease Using Machine Learning
    Wang, Chen
    Zhao, Yue
    Jin, Bingyu
    Gan, Xuedong
    Liang, Bin
    Xiang, Yang
    Zhang, Xiaokang
    Lu, Zhibing
    Zheng, Fang
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2021, 8
  • [3] Predictive model for very early recurrence of patients with perihilar cholangiocarcinoma: a machine learning approach
    Kawashima, Jun
    Endo, Yutaka
    Rashid, Zayed
    Altaf, Abdullah
    Woldesenbet, Selamawit
    Tsilimigras, Diamantis I.
    Guglielmi, Alfredo
    Marques, Hugo P.
    Maithel, Shishir K.
    Koerkamp, Bas Groot
    Pulitano, Carlo
    Aucejo, Federico
    Endo, Itaru
    Pawlik, Timothy M.
    HEPATOBILIARY SURGERY AND NUTRITION, 2025, 14 (01)
  • [4] Development of a predictive model of venous thromboembolism recurrence in anticoagulated cancer patients using machine learning
    Munoz, Andres J.
    Souto, Juan Carlos
    Lecumberri, Ramon
    Obispo, Berta
    Sanchez, Antonio
    Aparicio, Jorge
    Aguayo, Cristina
    Gutierrez, David
    Palomo, Andres Garcia
    Fanjul, Victor
    del Rio-Bermudez, Carlos
    Vinuela-Beneitez, Maria Carmen
    Hernandez-Presa, Miguel Angel
    THROMBOSIS RESEARCH, 2023, 228 : 181 - 188
  • [5] Development and Validation of a Machine-Learning Model to Predict Early Recurrence of Intrahepatic Cholangiocarcinoma
    Alaimo, Laura
    Lima, Henrique A.
    Moazzam, Zorays
    Endo, Yutaka
    Yang, Jason
    Ruzzenente, Andrea
    Guglielmi, Alfredo
    Aldrighetti, Luca
    Weiss, Matthew
    Bauer, Todd W. W.
    Alexandrescu, Sorin
    Poultsides, George A. A.
    Maithel, Shishir K. K.
    Marques, Hugo P. P.
    Martel, Guillaume
    Pulitano, Carlo
    Shen, Feng
    Cauchy, Francois
    Koerkamp, Bas Groot
    Endo, Itaru
    Kitago, Minoru
    Pawlik, Timothy M. M.
    ANNALS OF SURGICAL ONCOLOGY, 2023, 30 (09) : 5406 - 5415
  • [6] Development and Validation of a Machine-Learning Model to Predict Early Recurrence of Intrahepatic Cholangiocarcinoma
    Laura Alaimo
    Henrique A. Lima
    Zorays Moazzam
    Yutaka Endo
    Jason Yang
    Andrea Ruzzenente
    Alfredo Guglielmi
    Luca Aldrighetti
    Matthew Weiss
    Todd W. Bauer
    Sorin Alexandrescu
    George A. Poultsides
    Shishir K. Maithel
    Hugo P. Marques
    Guillaume Martel
    Carlo Pulitano
    Feng Shen
    François Cauchy
    Bas Groot Koerkamp
    Itaru Endo
    Minoru Kitago
    Timothy M. Pawlik
    Annals of Surgical Oncology, 2023, 30 : 5406 - 5415
  • [7] Development and validation of a multivariate predictive model for rheumatoid arthritis mortality using a machine learning approach
    Lezcano-Valverde, Jose M.
    Salazar, Fernando
    Leon, Leticia
    Toledano, Esther
    Jover, Juan A.
    Fernandez-Gutierrez, Benjamin
    Soudah, Eduardo
    Gonzalez-Alvaro, Isidoro
    Abasolo, Lydia
    Rodriguez-Rodriguez, Luis
    SCIENTIFIC REPORTS, 2017, 7
  • [8] Development and validation of a multivariate predictive model for rheumatoid arthritis mortality using a machine learning approach
    José M. Lezcano-Valverde
    Fernando Salazar
    Leticia León
    Esther Toledano
    Juan A. Jover
    Benjamín Fernandez-Gutierrez
    Eduardo Soudah
    Isidoro González-Álvaro
    Lydia Abasolo
    Luis Rodriguez-Rodriguez
    Scientific Reports, 7
  • [9] Development of predictive model for obstructive sleep apnea using machine learning
    Kim, H. W.
    Cho, J. W.
    Kim, D. J.
    JOURNAL OF SLEEP RESEARCH, 2020, 29 : 70 - 70
  • [10] Development of a predictive inpatient falls risk model using machine learning
    Ladios-Martin, Mireia
    Cabanero-Martinez, Maria-Jose
    Fernandez-de-Maya, Jose
    Ballesta-Lopez, Francisco-Javier
    Belso-Garzas, Adrian
    Zamora-Aznar, Francisco-Manuel
    Cabrero-Garcia, Julio
    JOURNAL OF NURSING MANAGEMENT, 2022, 30 (08) : 3777 - 3786