Explicit Visual Prompts for Visual Object Tracking

被引:0
|
作者
Shi, Liangtao [1 ,2 ]
Zhong, Bineng [1 ,2 ]
Liang, Qihua [1 ,2 ]
Li, Ning [1 ,2 ]
Zhang, Shengping [3 ]
Li, Xianxian [1 ,2 ]
机构
[1] Guangxi Normal Univ, Key Lab Educ Blockchain & Intelligent Technol, Minist Educ, Guilin, Peoples R China
[2] Guangxi Normal Univ, Guangxi Key Lab Multi Source Informat Min Secur, Guilin, Peoples R China
[3] Harbin Inst Technol, Harbin, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
How to effectively exploit spatio-temporal information is crucial to capture target appearance changes in visual tracking. However, most deep learning-based trackers mainly focus on designing a complicated appearance model or template updating strategy, while lacking the exploitation of context between consecutive frames and thus entailing the when-and-how-to-update dilemma. To address these issues, we propose a novel explicit visual prompts framework for visual tracking, dubbed EVPTrack. Specifically, we utilize spatio-temporal tokens to propagate information between consecutive frames without focusing on updating templates. As a result, we cannot only alleviate the challenge of when-to-update, but also avoid the hyper-parameters associated with updating strategies. Then, we utilize the spatio-temporal tokens to generate explicit visual prompts that facilitate inference in the current frame. The prompts are fed into a transformer encoder together with the image tokens without additional processing. Consequently, the efficiency of our model is improved by avoiding how-to-update. In addition, we consider multi-scale information as explicit visual prompts, providing mul-tiscale template features to enhance the EVPTrack's ability to handle target scale changes. Extensive experimental results on six benchmarks (i.e., LaSOT, LaSOText, GOT-10k, UAV123, TrackingNet, and TNL2K.) validate that our EVPTrack can achieve competitive performance at a real-time speed by effectively exploiting both spatio-temporal and multi-scale information. Code and models are available at https://github.com/GXNU-ZhongLab/EVPTrack.
引用
收藏
页码:4838 / 4846
页数:9
相关论文
共 50 条
  • [1] VISUAL TRACKING OF OBJECT SILHOUETTES
    Boudoukh, Guy
    Leichter, Ido
    Rivlin, Ehud
    2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 3625 - 3628
  • [2] Visual object tracking: A survey
    Chen, Fei
    Wang, Xiaodong
    Zhao, Yunxiang
    Lv, Shaohe
    Niu, Xin
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2022, 222
  • [3] Visual tracking and object recognition
    Tannenbaum, A
    Yezzi, A
    Goldstein, A
    NONLINEAR CONTROL SYSTEMS 2001, VOLS 1-3, 2002, : 1539 - 1542
  • [4] Visual tracking of a stochastically mobile object
    Yi, Fazhen
    Jiang, Yonglin
    Li, Jincheng
    ISSCAA 2006: 1ST INTERNATIONAL SYMPOSIUM ON SYSTEMS AND CONTROL IN AEROSPACE AND ASTRONAUTICS, VOLS 1AND 2, 2006, : 440 - +
  • [5] Faster MDNet for Visual Object Tracking
    Yu, Qianqian
    Fan, Keqi
    Wang, Yiyang
    Zheng, Yuhui
    APPLIED SCIENCES-BASEL, 2022, 12 (05):
  • [6] Graph Based Visual Object Tracking
    Zhou Guanling
    Wang Yuping
    Dong Nanping
    2009 ISECS INTERNATIONAL COLLOQUIUM ON COMPUTING, COMMUNICATION, CONTROL, AND MANAGEMENT, VOL I, 2009, : 99 - 102
  • [7] Collaborative strategy for visual object tracking
    Yang, Yongquan
    Chen, Ning
    Jiang, Shenlu
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (06) : 7283 - 7303
  • [8] Visual Object Tracking with Autoencoder Representations
    Besbinar, Beril
    Alatan, A. Aydin
    2016 24TH SIGNAL PROCESSING AND COMMUNICATION APPLICATION CONFERENCE (SIU), 2016, : 2041 - 2044
  • [9] Visual Object Tracking for Handheld Devices
    Yun, Woo-han
    Kim, Dohyung
    Lee, Jaeyeon
    Kim, Jaehong
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2013,
  • [10] Object Tracking Based on Visual Attention
    Lin, Mingqiang
    Dai, Houde
    2016 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), 2016, : 1846 - 1849