Composite solitons in spin-orbit-coupled Bose-Einstein condensates within optical lattices

被引:1
|
作者
Chen, Junbo [1 ]
Mihalache, Dumitru [2 ]
Belic, Milivoj R. [3 ]
Gao, Xuzhen [4 ]
Zhu, Danfeng [1 ]
Deng, Dingnan [1 ]
Qiu, Shaobin [1 ]
Zhu, Xing [5 ]
Zeng, Liangwei [5 ]
机构
[1] Jiaying Univ, Sch Phys & Elect Engn, Meizhou 514015, Peoples R China
[2] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest 077125, Romania
[3] Hamad Bin Khalifa Univ, Coll Sci & Engn, Doha, Qatar
[4] Lyuliang Univ, Dept Phys & Elect Informat Engn, Lishi 033001, Shanxi, Peoples R China
[5] Guangzhou Maritime Univ, Dept Basic Courses, Guangzhou 510725, Peoples R China
基金
中国国家自然科学基金;
关键词
Gap solitons; Dipole solitons; Spin-orbit-coupling; Nonlinear Schr & ouml; dinger equation; Bose-Einstein condensates; GAP SOLITONS;
D O I
10.1016/j.chaos.2024.115325
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We demonstrate that the two-component model of Bose-Einstein condensates (BECs) trapped in an optical lattice with the spin-orbit Rashba coupling and cubic repulsive interactions gives rise to gap solitary complexes of three types. The first type is the fundamental-fundamental soliton (FFS), with a fundamental soliton in both components; the second is the fundamental-dipole soliton (FDS), with a fundamental soliton in one component and a dipole soliton in the other; and the third is the dual-hump-dual-hump soliton (DHDHS), with a dual- hump soliton in both components. We study two types of fundamental solitons, namely, the single-hump and the three-hump ones. We establish that the first and second components of FFS and DHDHS in our model are mirror-symmetric about the y-axis. The first component of FDS displays the left-right symmetry, while the second component displays the rotational symmetry about the origin. We also discover that the stability domains of FFS and FDS in both the first and second band gaps are large, lending credence to their stability. This work advances the understanding of the rather complicated behavior of BECs in optical lattices and opens avenues for experimental verification of these gap soliton structures.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Gap solitons in spin-orbit-coupled Bose-Einstein condensates in optical lattices
    Zhang, Yongping
    Xu, Yong
    Busch, Thomas
    PHYSICAL REVIEW A, 2015, 91 (04):
  • [2] Gap solitons in spin-orbit-coupled Bose-Einstein condensates in bichromatic optical lattices
    Xu, T. F.
    Zhang, Y. F.
    Li, Zai-Dong
    Zhang, C.
    Hao, R.
    OPTIK, 2018, 168 : 140 - 151
  • [3] Wannier solitons in spin-orbit-coupled Bose-Einstein condensates in optical lattices with a flat band
    Wang, Chenhui
    Zhang, Yongping
    Konotop, V. V.
    PHYSICAL REVIEW A, 2023, 108 (01)
  • [4] Bright solitons in spin-orbit-coupled Bose-Einstein condensates
    Xu, Yong
    Zhang, Yongping
    Wu, Biao
    PHYSICAL REVIEW A, 2013, 87 (01):
  • [5] Tunable spin-orbit-coupled Bose-Einstein condensates in deep optical lattices
    Salerno, M.
    Abdullaev, F. Kh.
    Gammal, A.
    Tomio, Lauro
    PHYSICAL REVIEW A, 2016, 94 (04)
  • [6] Spin-orbit-coupled spinor gap solitons in Bose-Einstein condensates
    Yang, Jing
    Zhang, Yongping
    PHYSICAL REVIEW A, 2023, 107 (02)
  • [7] Spin-orbit-coupled Bose-Einstein condensates
    Lin, Y. -J.
    Jimenez-Garcia, K.
    Spielman, I. B.
    NATURE, 2011, 471 (7336) : 83 - U99
  • [8] Bose-Einstein condensates in spin-orbit-coupled optical lattices: Flat bands and superfluidity
    Zhang, Yongping
    Zhang, Chuanwei
    PHYSICAL REVIEW A, 2013, 87 (02):
  • [9] Analytical results for the superflow of spin-orbit-coupled Bose-Einstein condensates in optical lattices
    Luo, Xiaobing
    Hu, Zhou
    Zeng, Zhao-Yun
    Luo, Yunrong
    Yang, Baiyuan
    Xiao, Jinpeng
    Li, Lei
    Chen, Ai-Xi
    PHYSICAL REVIEW A, 2021, 103 (06)
  • [10] Gap solitons in spin-orbit-coupled Bose-Einstein condensates in mixed linear-nonlinear optical lattices
    Zhu, Xing
    Li, Huagang
    Shi, Zhiwei
    Xiang, Ying
    He, Yingji
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2017, 50 (15)