LEVENBERG-MARQUARDT METHOD WITH A GENERAL LM PARAMETER AND A NONMONOTONE TRUST REGION TECHNIQUE

被引:0
|
作者
Zhao, Luyao [1 ]
Tang, Jingyong [1 ]
机构
[1] Xinyang Normal Univ, Coll Math & Stat, Xinyang 464000, Peoples R China
来源
关键词
Nonlinear equations; Levenb erg-Marquardt method; nonmono- tone technique; local error bound; weighted linear complementarity problem; CONVERGENCE PROPERTIES; ALGORITHM; SYSTEMS;
D O I
10.11948/20220441
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a new Levenb erg -Marquardt (LM) method for solving the nonlinear equations. The new LM method takes a general LM parameter lambda k = mu k [(1 - 0 ) IF k I delta + 0 IIJ kT F k e ] where 0 is an element of [0 , 1] and delta is an element of (0 , 3) and adopts a nonmonotone trust region technique to ensure the global convergence. Under the local error bound condition, we prove that the new LM method has at least a superlinear convergence rate with the order min { 1 + delta, 4 - delta, 2 } . We also apply the new LM method to solve the nonlinear equations arising from the weighted linear complementarity problem. Numerical experiments indicate that the new LM method is efficient and promising.
引用
收藏
页码:1959 / 1976
页数:18
相关论文
共 50 条
  • [1] Trust Region Levenberg-Marquardt Method for Linear SVM Trust Region Levenberg-Marquardt Method for Linear SVM
    Chauhan, Vinod Kumar
    Dahiya, Kalpana
    Sharma, Anuj
    2017 NINTH INTERNATIONAL CONFERENCE ON ADVANCES IN PATTERN RECOGNITION (ICAPR), 2017, : 380 - 385
  • [2] A new adaptive Levenberg-Marquardt parameter with a nonmonotone and trust region strategies for the system of nonlinear equations
    Rezaeiparsa, Zahra
    Ashrafi, Ali
    MATHEMATICAL SCIENCES, 2024, 18 (03) : 479 - 491
  • [3] A Levenberg-Marquardt Method for Nonlinear Complementarity Problems Based on Nonmonotone Trust Region and Line Search Techniques
    Fan, Bin
    Ma, Changfeng
    Wu, Aidi
    Wu, Chao
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (03)
  • [4] An efficient Levenberg-Marquardt method with a new LM parameter for systems of nonlinear equations
    Amini, Keyvan
    Rostami, Faramarz
    Caristi, Giuseppe
    OPTIMIZATION, 2018, 67 (05) : 637 - 650
  • [5] Nonmonotone Levenberg-Marquardt algorithms and their convergence analysis
    Zhang, JZ
    Chen, LH
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1997, 92 (02) : 393 - 418
  • [6] A note on the Levenberg-Marquardt parameter
    Fan, Jinyan
    Pan, Jianyu
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 207 (02) : 351 - 359
  • [7] A nonmonotone accelerated Levenberg-Marquardt method for the B-eigenvalues of symmetric tensors
    Cao, Mingyuan
    Yang, Yueting
    Hou, Tianliang
    Li, Chaoqian
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2022, 29 (01) : 113 - 129
  • [8] ON THE GLOBAL CONVERGENCE OF A PARAMETER-ADJUSTING LEVENBERG-MARQUARDT METHOD
    Qi, Liyan
    Xiao, Xiantao
    Zhang, Liwei
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2015, 5 (01): : 25 - 36
  • [9] Global Convergence of a Stochastic Levenberg-Marquardt Algorithm Based on Trust Region
    Shao, Wei-Yi
    Fan, Jin-Yan
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2024,
  • [10] Algebraic rules for computing the regularization parameter of the Levenberg-Marquardt method
    Karas, Elizabeth W.
    Santos, Sandra A.
    Svaiter, Benar F.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 65 (03) : 723 - 751