Topological and geometric analysis of cell states in single-cell transcriptomic data

被引:0
|
作者
Huynh, Tram [1 ]
Cang, Zixuan [2 ]
机构
[1] North Carolina State Univ, Stat & Appl Math, Raleigh, NC USA
[2] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
scRNA-seq; cell state; transition cell; curvature; persistent homology; RICCI CURVATURE; RNA-SEQ; DIFFERENTIATION; SPACES; TOOL;
D O I
10.1093/bib/bbae176
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell RNA sequencing (scRNA-seq) enables dissecting cellular heterogeneity in tissues, resulting in numerous biological discoveries. Various computational methods have been devised to delineate cell types by clustering scRNA-seq data, where clusters are often annotated using prior knowledge of marker genes. In addition to identifying pure cell types, several methods have been developed to identify cells undergoing state transitions, which often rely on prior clustering results. The present computational approaches predominantly investigate the local and first-order structures of scRNA-seq data using graph representations, while scRNA-seq data frequently display complex high-dimensional structures. Here, we introduce scGeom, a tool that exploits the multiscale and multidimensional structures in scRNA-seq data by analyzing the geometry and topology through curvature and persistent homology of both cell and gene networks. We demonstrate the utility of these structural features to reflect biological properties and functions in several applications, where we show that curvatures and topological signatures of cell and gene networks can help indicate transition cells and the differentiation potential of cells. We also illustrate that structural characteristics can improve the classification of cell types.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Single-cell Transcriptomic Analysis
    Zheng, Zhihong
    Chen, Enguo
    Lu, Weiguo
    Mouradian, Gary
    Hodges, Matthew
    Liang, Mingyu
    Liu, Pengyuan
    Lu, Yan
    COMPREHENSIVE PHYSIOLOGY, 2020, 10 (02) : 767 - 783
  • [2] Cross-Species Analysis of Single-Cell Transcriptomic Data
    Shafer, Maxwell E. R.
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2019, 7
  • [3] Single-cell transcriptomic analysis of endometriosis
    Fonseca, Marcos A. S.
    Haro, Marcela
    Wright, Kelly N.
    Lin, Xianzhi
    Abbasi, Forough
    Sun, Jennifer
    Hernandez, Lourdes
    Orr, Natasha L.
    Hong, Jooyoon
    Choi-Kuaea, Yunhee
    Maluf, Horacio M.
    Balzer, Bonnie L.
    Fishburn, Aaron
    Hickey, Ryan
    Cass, Ilana
    Goodridge, Helen S.
    Truong, Mireille
    Wang, Yemin
    Pisarska, Margareta D.
    Dinh, Huy Q.
    EL-Naggar, Amal
    Huntsman, David G.
    Anglesio, Michael S.
    Goodman, Marc T.
    Medeiros, Fabiola
    Siedhoff, Matthew
    Lawrenson, Kate
    NATURE GENETICS, 2023, 55 (02) : 255 - 267
  • [4] Single-cell transcriptomic analysis of endometriosis
    Marcos A. S. Fonseca
    Marcela Haro
    Kelly N. Wright
    Xianzhi Lin
    Forough Abbasi
    Jennifer Sun
    Lourdes Hernandez
    Natasha L. Orr
    Jooyoon Hong
    Yunhee Choi-Kuaea
    Horacio M. Maluf
    Bonnie L. Balzer
    Aaron Fishburn
    Ryan Hickey
    Ilana Cass
    Helen S. Goodridge
    Mireille Truong
    Yemin Wang
    Margareta D. Pisarska
    Huy Q. Dinh
    Amal EL-Naggar
    David G. Huntsman
    Michael S. Anglesio
    Marc T. Goodman
    Fabiola Medeiros
    Matthew Siedhoff
    Kate Lawrenson
    Nature Genetics, 2023, 55 : 255 - 267
  • [5] Deterministic patterns in single-cell transcriptomic data
    Cao, Zhixing
    Wang, Yiling
    Grima, Ramon
    NPJ SYSTEMS BIOLOGY AND APPLICATIONS, 2025, 11 (01)
  • [6] InterCellar enables interactive analysis and exploration of cell−cell communication in single-cell transcriptomic data
    Marta Interlandi
    Kornelius Kerl
    Martin Dugas
    Communications Biology, 5
  • [7] Geometric Sketching Compactly Summarizes the Single-Cell Transcriptomic Landscape
    Hie, Brian
    Cho, Hyunghoon
    DeMeo, Benjamin
    Bryson, Bryan
    Berger, Bonnie
    CELL SYSTEMS, 2019, 8 (06) : 483 - +
  • [8] Reconstructing gene regulatory networks in single-cell transcriptomic data analysis
    Hao Dai
    Qi-Qi Jin
    Lin Li
    Luo-Nan Chen
    Zoological Research, 2020, 41 (06) : 599 - 604
  • [9] Data normalization for addressing the challenges in the analysis of single-cell transcriptomic datasets
    Duran, Raquel Cuevas-Diaz
    Wei, Haichao
    Wu, Jiaqian
    BMC GENOMICS, 2024, 25 (01)
  • [10] Panpipes: a pipeline for multiomic single-cell and spatial transcriptomic data analysis
    Curion, Fabiola
    Rich-Griffin, Charlotte
    Agarwal, Devika
    Ouologuem, Sarah
    Rue-Albrecht, Kevin
    May, Lilly
    Garcia, Giulia E. L.
    Heumos, Lukas
    Thomas, Tom
    Lason, Wojciech
    Sims, David
    Theis, Fabian J.
    Dendrou, Calliope A.
    GENOME BIOLOGY, 2024, 25 (01):