Robot path planning algorithm with improved DDPG algorithm

被引:1
|
作者
Lyu, Pingli [1 ]
机构
[1] Xuzhou Coll Ind Technol, Sch Informat Engn, Xuzhou 221140, Jiangsu Provinc, Peoples R China
关键词
Deep reinforcement learning; Path planning; Artificial potential field; Mobile robot; DDPG;
D O I
10.1007/s12008-024-01834-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study focuses on enhancing the autonomous path planning capabilities of intelligent mobile robots, which are complex mechatronic systems combining various functionalities such as autonomous planning, behavior control, and environment sensing. Path planning is crucial for robot mobility, enabling them to navigate autonomously. We propose an improvement to the deep deterministic policy gradient (DDPG) method by leveraging deep reinforcement learning algorithms. Through extensive experimentation, our method demonstrates superior performance compared to traditional DDPG, with notable reductions in training time and iterations required to reach targets. Additionally, it reduces dead zone encounters during travel and enhances convergence speed. Our findings contribute fresh insights and strategies for enhancing mobile robot path planning in unfamiliar environments. Future research will explore further advancements, particularly in addressing dynamic obstacles and optimizing real-world navigation efficiency.
引用
收藏
页码:1123 / 1133
页数:11
相关论文
共 50 条
  • [1] Mobile Robot Path Planning Based on Improved DDPG Reinforcement Learning Algorithm
    Dong, Yuansheng
    Zou, Xingjie
    PROCEEDINGS OF 2020 IEEE 11TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2020), 2020, : 52 - 55
  • [2] Research on Dynamic Path Planning of Mobile Robot Based on Improved DDPG Algorithm
    Li, Peng
    Ding, Xiangcheng
    Sun, Hongfang
    Zhao, Shiquan
    Cajo, Ricardo
    MOBILE INFORMATION SYSTEMS, 2021, 2021
  • [3] Robot Path Planning Based on Improved A* Algorithm
    Peng, Jiansheng
    Huang, Yiyong
    Luo, Guan
    CYBERNETICS AND INFORMATION TECHNOLOGIES, 2015, 15 (02) : 171 - 180
  • [4] An improved genetic algorithm for robot path planning
    Yao, Zhifeng
    Xu, Ye
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2024, 24 (03) : 1331 - 1340
  • [5] Emergency fire escape path planning model based on improved DDPG algorithm
    Feng, Zengxi
    Wang, Chang
    An, Jianhu
    Zhang, Xian
    Liu, Xuefeng
    Ji, Xiuming
    Kang, Limin
    Quan, Wei
    JOURNAL OF BUILDING ENGINEERING, 2024, 95
  • [6] Improved RRT* Algorithm for Disinfecting Robot Path Planning
    Wang, Haotian
    Zhou, Xiaolong
    Li, Jianyong
    Yang, Zhilun
    Cao, Linlin
    SENSORS, 2024, 24 (05)
  • [7] Improved Astar algorithm for path planning of marine robot
    Wang, Zhao
    Xiang, Xianbo
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 5410 - 5414
  • [8] An improved genetic algorithm in path planning for mobile robot
    Liu, Guangrui
    Tian, Xin
    Zhou, Wenbo
    Guo, Kefu
    PROCEEDINGS OF THE 2015 4TH INTERNATIONAL CONFERENCE ON COMPUTER, MECHATRONICS, CONTROL AND ELECTRONIC ENGINEERING (ICCMCEE 2015), 2015, 37 : 998 - 1003
  • [9] Mobile Robot Path Planning Based on an Improved A* Algorithm
    Zhao X.
    Wang Z.
    Huang C.
    Zhao Y.
    Zhao, Yanwei (zyw@zjut.edu.cn), 2018, Chinese Academy of Sciences (40): : 903 - 910
  • [10] Robot Path Planning Based on Improved Genetic Algorithm
    Zhao, Yuan
    Gu, Jason
    2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2013, : 2515 - 2522