A Multi-strategy Slime Mould Algorithm for Solving Global Optimization and Engineering Optimization Problems

被引:2
|
作者
Wang, Wen-chuan [1 ]
Tao, Wen-hui [1 ]
Tian, Wei-can [1 ]
Zang, Hong-fei [1 ]
机构
[1] North China Univ Water Resources & Elect Power, Coll Water Resources, Zhengzhou 450046, Peoples R China
关键词
Slime mould algorithm; Opposition-based learning; Joint opposite selection; Equilibrium optimizer; Engineering optimization problems; SEARCH ALGORITHM; WMA;
D O I
10.1007/s12065-024-00962-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Aiming at the problems of slow convergence, low accuracy, and easy to fall into local optimum of the slime mould algorithm (SMA), we propose an improved SMA (OJESMA). OJESMA improves the performance of the algorithm by combining strategies based on opposition-based learning, joint opposite selection, and equilibrium optimizer. First, we introduce an adversarial learning-opposition-based learning, in generating the initial population of slime molds. Second, we incorporate a joint inverse selection strategy, including selective leading opposition and dynamic opposite. Finally, we introduce the balanced candidate principle of the equilibrium optimizer algorithm into SMA, which enhances the algorithm's optimal search capability and anti-stagnation ability. We conducted optimization search experiments on 29 test functions from CEC2017 and 10 benchmark test functions from CEC2020, as well as nonparametric statistical analysis (Friedman and Wilcoxon). The experimental results and non-parametric test results show that OJESMA has better optimization accuracy, convergence performance, and stability. To further validate the effectiveness of the algorithm, we also performed optimization tests on six engineering problems and the variable index Muskingum. In summary, OJESMA demonstrates its practical value and advantages in solving various complex optimization problems with its excellent performance, providing new perspectives and methods for the development of optimization algorithms.
引用
收藏
页码:3865 / 3889
页数:25
相关论文
共 50 条
  • [1] A multi-strategy improved slime mould algorithm for global optimization and engineering design problems
    Deng, Lingyun
    Liu, Sanyang
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 404
  • [2] Enhanced Multi-Strategy Slime Mould Algorithm for Global Optimization Problems
    Dong, Yuncheng
    Tang, Ruichen
    Cai, Xinyu
    BIOMIMETICS, 2024, 9 (08)
  • [3] Multi-Strategy Enhanced Slime Mould Algorithm for Optimization Problems
    Duan, Zaixin
    Qian, Xuezhong
    Song, Wei
    IEEE ACCESS, 2025, 13 : 7850 - 7871
  • [4] A Multi-strategy Improved Grasshopper Optimization Algorithm for Solving Global Optimization and Engineering Problems
    Liu, Wei
    Yan, Wenlv
    Li, Tong
    Han, Guangyu
    Ren, Tengteng
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2024, 17 (01)
  • [5] A multi-strategy improved Coati optimization algorithm for solving global optimization problems
    Luo, Xin
    Yuan, Yage
    Fu, Youfa
    Huang, Haisong
    Wei, Jianan
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (04):
  • [6] Multi-strategy enhanced artificial rabbit optimization algorithm for solving engineering optimization problems
    He, Ni-ni
    Wang, Wen-chuan
    Wang, Jun
    EVOLUTIONARY INTELLIGENCE, 2025, 18 (01)
  • [7] Multi-strategy Slime Mould Algorithm for hydropower multi-reservoir systems optimization
    Ahmadianfar, Iman
    Noori, Ramzia Majeed
    Togun, Hussein
    Falah, Mayadah W.
    Homod, Raad Z.
    Fu, Minglei
    Halder, Bijay
    Deo, Ravinesh
    Yaseen, Zaher Mundher
    KNOWLEDGE-BASED SYSTEMS, 2022, 250
  • [8] A multi-strategy enhanced reptile search algorithm for global optimization and engineering optimization design problems
    Zhou, Liping
    Liu, Xu
    Tian, Ruiqing
    Wang, Wuqi
    Jin, Guowei
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (02):
  • [9] A Multi-Strategy Seeker Optimization Algorithm for Optimization Constrained Engineering Problems
    Duan, Shaomi
    Luo, Huilong
    Liu, Haipeng
    IEEE ACCESS, 2022, 10 : 7165 - 7195
  • [10] A multi-strategy enhanced northern goshawk optimization algorithm for global optimization and engineering design problems
    Li, Ke
    Huang, Haisong
    Fu, Shengwei
    Ma, Chi
    Fan, Qingsong
    Zhu, Yunwei
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 415