Computing Data-driven Multilinear Metro Maps

被引:1
|
作者
Noellenburg, Martin [1 ]
Terziadis, Soeren [1 ]
机构
[1] TU Wien, Algorithms & Complex Grp, Vienna, Austria
来源
CARTOGRAPHIC JOURNAL | 2023年 / 60卷 / 04期
基金
欧盟地平线“2020”;
关键词
Metro map layout; C-oriented schematization; mixed integer linear programming; SIMPLIFICATION; USABILITY; LAYOUT;
D O I
10.1080/00087041.2024.2304476
中图分类号
P9 [自然地理学]; K9 [地理];
学科分类号
0705 ; 070501 ;
摘要
Traditionally, most schematic metro maps in practice as well as metro map layout algorithms adhere to an octolinear layout style with all paths composed of horizontal, vertical, and 45(degrees)-diagonal edges. Despite growing interest in more general multilinear metro maps, generic algorithms to draw metro maps based on a system of k >= 2 not necessarily equidistant slopes have not been investigated thoroughly. In this paper, we present and implement an adaptation of the octolinear mixed-integer linear programming approach of N & ouml;llenburg and Wolff (2011) that can draw metro maps schematized to any set C of arbitrary orientations. We further present a data-driven approach to determine a suitable set C by either detecting the best rotation of an equidistant orientation system or by clustering the input edge orientations using a k-medians algorithm. We demonstrate the new possibilities of our method using several real-world examples.
引用
收藏
页码:367 / 382
页数:16
相关论文
共 50 条
  • [1] Towards Data-Driven Multilinear Metro Maps
    Nickel, Soeren
    Nollenburg, Martin
    DIAGRAMMATIC REPRESENTATION AND INFERENCE, DIAGRAMS 2020, 2020, 12169 : 153 - 161
  • [2] Data-Driven Computing
    Kirchdoerfer, Trenton
    Ortiz, Michael
    ADVANCES IN COMPUTATIONAL PLASTICITY: A BOOK IN HONOUR OF D. ROGER J. OWEN, 2018, 46 : 165 - 183
  • [3] Data-driven computing in dynamics
    Kirchdoerfer, T.
    Ortiz, M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 113 (11) : 1697 - 1710
  • [4] Data-Driven Causalities for Strategy Maps
    Pirnay, Lhorie
    Burnay, Corentin
    RESEARCH CHALLENGES IN INFORMATION SCIENCE (RCIS 2021), 2021, 415 : 409 - 417
  • [5] Data-Driven Granular Cognitive Computing
    Wang, Guoyin
    ROUGH SETS, 2017, 10313 : 13 - 24
  • [6] An investigation on the coupling of data-driven computing and model-driven computing
    Yang, Jie
    Huang, Wei
    Huang, Qun
    Hu, Heng
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 393
  • [7] Data-Driven Techniques in Computing System Management
    Li, Tao
    Zeng, Chunqiu
    Jiang, Yexi
    Zhou, Wubai
    Tang, Liang
    Liu, Zheng
    Huang, Yue
    ACM COMPUTING SURVEYS, 2017, 50 (03)
  • [8] Cloud computing for data-driven science and engineering
    Simmhan, Yogesh
    Ramakrishnan, Lavanya
    Antoniu, Gabriel
    Goble, Carole
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2016, 28 (04): : 947 - 949
  • [9] Editorial: Collaborative Computing for Data-Driven Systems
    Wang, Xinheng
    Iqbal, Muddesar
    Gao, Honghao
    Huang, Kaizhu
    Tchernykh, Andrei
    MOBILE NETWORKS & APPLICATIONS, 2020, 25 (04): : 1348 - 1350
  • [10] Editorial: Collaborative Computing for Data-Driven Systems
    Xinheng Wang
    Muddesar Iqbal
    Honghao Gao
    Kaizhu Huang
    Andrei Tchernykh
    Mobile Networks and Applications, 2020, 25 : 1348 - 1350