A COMBINED KAUP-NEWELL TYPE INTEGRABLE HAMILTONIAN HIERARCHY WITH FOUR POTENTIALS AND A HEREDITARY RECURSION OPERATOR

被引:5
|
作者
Ma, Wen-xiu [1 ,2 ,3 ,4 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[3] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[4] North West Univ, Dept Math Sci, Mat Sci Innovat & Modelling, Mafikeng Campus, ZA-2735 Mmabatho, South Africa
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2024年
关键词
Matrix eigenvalue problem; zero curvature equation; integrable hier; archy; derivate nonlinear Schr & ouml; dinger equations; SOLITON HIERARCHY; EQUATIONS; EVOLUTION;
D O I
10.3934/dcdss.2024117
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. We aim to study a Kaup-Newell type matrix eigenvalue problem with four potentials, generated from a specific matrix Lie algebra, and compute an associated soliton hierarchy and its hereditary recursion operator and bi-Hamiltonian structure. The Liouville integrability of the resulting soliton hierarchy is a consequence of the bi-Hamiltonian structure. An illustrative example is explicitly worked out, providing a novel integrable model consisting of combined derivative nonlinear Schr & ouml;dinger equations involving two arbitrary constants.
引用
收藏
页数:11
相关论文
共 28 条
  • [1] A combined Kaup-Newell type integrable hierarchy with four potentials and its bi-Hamiltonian formulation
    Ma, Wen-Xiu
    REVIEWS IN MATHEMATICAL PHYSICS, 2024,
  • [2] A combined generalized Kaup-Newell soliton hierarchy and its hereditary recursion operator and bi-Hamiltonian structure
    Ma, Wen-Xiu
    THEORETICAL AND MATHEMATICAL PHYSICS, 2024, 221 (01) : 1603 - 1614
  • [3] A new expanding integrable hierarchy of Kaup-Newell hierarchy
    Dong, Huanhe
    MODERN PHYSICS LETTERS B, 2006, 20 (20): : 1241 - 1246
  • [4] An integrable generalization of the Kaup-Newell soliton hierarchy
    Ma, Wen-Xiu
    Shi, Chang-Guang
    Appiah, Emmanuel A.
    Li, Chunxia
    Shen, Shoufeng
    PHYSICA SCRIPTA, 2014, 89 (08)
  • [5] Nonlinear Integrable Couplings of the Kaup-Newell Hierarchy
    Wei, Xiaoli
    Zhang, Jiao
    INTERNATIONAL JOURNAL OF FUTURE GENERATION COMMUNICATION AND NETWORKING, 2016, 9 (01): : 61 - 70
  • [6] New Integrable Couplings of Generalized Kaup-Newell Hierarchy and Its Hamiltonian Structures
    夏铁成
    张改莲
    范恩贵
    CommunicationsinTheoreticalPhysics, 2011, 56 (07) : 1 - 4
  • [7] New Integrable Couplings of Generalized Kaup-Newell Hierarchy and Its Hamiltonian Structures
    Xia Tie-Cheng
    Zhang Gai-Lian
    Fan En-Gui
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 56 (01) : 1 - 4
  • [8] A combined integrable hierarchy with four potentials and its recursion operator and bi-Hamiltonian structure
    Ma, Wen-Xiu
    INDIAN JOURNAL OF PHYSICS, 2024, : 1063 - 1069
  • [9] INTEGRABLE COUPLINGS OF SUPER KAUP-NEWELL EQUATION HIERARCHY
    Ji, Jie
    Sun, Ye-Peng
    Zhang, Jian-Bing
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2012, 26 (30):
  • [10] Bi-integrable couplings of a Kaup-Newell type soliton hierarchy and their bi-Hamiltonian structures
    Yu, Shuimeng
    Yao, Yuqin
    Shen, Shoufeng
    Ma, Wen-Xiu
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 23 (1-3) : 366 - 377