Singular elliptic measure data problems with irregular obstacles

被引:0
|
作者
Byun, Sun -Sig [1 ]
Song, Kyeong [2 ]
Youn, Yeonghun [3 ]
机构
[1] Seoul Natl Univ, Res Inst Math, Dept Math Sci, Seoul 08826, South Korea
[2] Korea Inst Adv Study, Sch Math, Seoul 02455, South Korea
[3] Yeungnam Univ, Dept Math, Gyongsan 38541, South Korea
基金
新加坡国家研究基金会;
关键词
Singular p-laplacian; Irregular obstacle; Measure data; Potential estimate; RIESZ-POTENTIALS; ZYGMUND THEORY; REGULARITY; GROWTH;
D O I
10.1016/j.na.2024.113559
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate elliptic irregular obstacle problems with p-growth involving measure data. Emphasis is on the strongly singular case 1 < p <= 2-1/n, and we obtain several new comparison estimates to prove gradient potential estimates in an intrinsic form. Our approach can be also applied to derive zero-order potential estimates.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Potential estimates for elliptic measure data problems with irregular obstacles
    Byun, Sun-Sig
    Song, Kyeong
    Youn, Yeonghun
    MATHEMATISCHE ANNALEN, 2023, 387 (1-2) : 745 - 805
  • [2] Potential estimates for elliptic measure data problems with irregular obstacles
    Sun-Sig Byun
    Kyeong Song
    Yeonghun Youn
    Mathematische Annalen, 2023, 387 : 745 - 805
  • [3] Nondivergence elliptic and parabolic problems with irregular obstacles
    Sun-Sig Byun
    Ki-Ahm Lee
    Jehan Oh
    Jinwan Park
    Mathematische Zeitschrift, 2018, 290 : 973 - 990
  • [4] Nondivergence elliptic and parabolic problems with irregular obstacles
    Byun, Sun-Sig
    Lee, Ki-Ahm
    Oh, Jehan
    Park, Jinwan
    MATHEMATISCHE ZEITSCHRIFT, 2018, 290 (3-4) : 973 - 990
  • [5] Calderon-Zygmund theory for nonlinear elliptic problems with irregular obstacles
    Byun, Sun-Sig
    Cho, Yumi
    Wang, Lihe
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (10) : 3117 - 3143
  • [6] Obstacles problems with measure data and linear operators
    Dall'Aglio, P
    Leone, C
    POTENTIAL ANALYSIS, 2002, 17 (01) : 45 - 64
  • [7] Obstacles Problems with Measure Data and Linear Operators
    P. Dall'Aglio
    C. Leone
    Potential Analysis, 2002, 17 : 45 - 64
  • [8] NONLINEAR GRADIENT ESTIMATES FOR DOUBLE PHASE ELLIPTIC PROBLEMS WITH IRREGULAR DOUBLE OBSTACLES
    Byun, Sun-Sig
    Liang, Shuang
    Zheng, Shenzhou
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (09) : 3839 - 3854
  • [9] Uniqueness results for elliptic problems with singular data
    Loredana Caso
    Boundary Value Problems, 2006
  • [10] Uniqueness results for elliptic problems with singular data
    Caso, Loredana
    BOUNDARY VALUE PROBLEMS, 2006, 2006 (1)