Advancing hyperspectral image classification with dual branch networks and informative feature extraction

被引:0
|
作者
Islam, Touhid [1 ]
Islam, Rashedul [1 ]
Al Mamun, Abdulla [1 ]
机构
[1] Hajee Mohammad Danesh Sci & Technol Univ, Comp Sci & Engn, Dinajpur, Bangladesh
关键词
Hyperspectral image (HSI); deep learning; convolutional neural network (CNN); classification; dimensionality reduction; spectral-spatial features; ATTENTION NETWORK; CNN;
D O I
10.1080/14498596.2024.2364231
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Hyperspectral imaging is increasingly important in academia and various professions, facing challenges like redundant features, inter-class correlations, and the curse of dimensionality. Principal Component Analysis and its variants, such as Sparse-PCA and Segmented-PCA, reduce the dimensionality of hyperspectral data but interpreting PCA results is complex. Our SPCA-mRMR technique integrates Sparse-PCA with a greedy feature selection method, mRMR. This, combined with a Dual Branch CNN model, improves hyperspectral image analysis, especially with noisy or limited data. Optimization reduces computational costs and enhances classification accuracy. Evaluations show our method's efficiency, using fewer variables without compromising accuracy, crucial for advancing HSI applications.
引用
收藏
页码:1151 / 1179
页数:29
相关论文
共 50 条
  • [1] Bidirectional Mamba with Dual-Branch Feature Extraction for Hyperspectral Image Classification
    Sun, Ming
    Zhang, Jie
    He, Xiaoou
    Zhong, Yihe
    SENSORS, 2024, 24 (21)
  • [2] From Global to Local: A Dual-Branch Structural Feature Extraction Method for Hyperspectral Image Classification
    Zhang, Ying
    Liang, Lianhui
    Mao, Jianxu
    Wang, Yaonan
    Jia, Lin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 1778 - 1791
  • [3] Hyperspectral Image Classification Using Dual-Branch Residual Networks
    Du, Tianjiao
    Zhang, Yongsheng
    Bao, Lidong
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (22)
  • [4] Feature Extraction for Hyperspectral Image Classification
    Uddin, M. P.
    Mamun, M. A.
    Hossain, M. A.
    2017 IEEE REGION 10 HUMANITARIAN TECHNOLOGY CONFERENCE (R10-HTC), 2017, : 379 - 382
  • [5] Classification of hyperspectral image based on dual-branch feature interaction network
    Li, Chenming
    Wang, Xiangyi
    Chen, Zhonghao
    Gao, Hongmin
    Xu, Shufang
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (09) : 3258 - 3279
  • [6] Multi-Level Feature Extraction Networks for Hyperspectral Image Classification
    Fang, Shaoyi
    Li, Xinyu
    Tian, Shimao
    Chen, Weihao
    Zhang, Erlei
    REMOTE SENSING, 2024, 16 (03)
  • [7] Spectral Feature Fusion Networks With Dual Attention for Hyperspectral Image Classification
    Li, Xian
    Ding, Mingli
    Pizurica, Aleksandra
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [8] Double-Branch Local Context Feature Extraction Network for Hyperspectral Image Classification
    Cui, Ying
    Li, Wenshan
    Chen, Liwei
    Gao, Shan
    Wang, Liguo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [9] Salient feature extraction for hyperspectral image classification
    Yu, Xuchu
    Wang, Ruirui
    Liu, Bing
    Yu, Anzhu
    REMOTE SENSING LETTERS, 2019, 10 (06) : 553 - 562
  • [10] Slow feature extraction for hyperspectral image classification
    Liu, Bing
    Yu, Anzhu
    Tan, Xiong
    Wang, Ruirui
    REMOTE SENSING LETTERS, 2021, 12 (05) : 429 - 438