Projections of future streamflow for Australia informed by CMIP6 and previous generations of global climate models

被引:6
|
作者
Zheng, Hongxing [1 ]
Chiew, Francis H. S. [1 ]
Post, David A. [1 ]
Robertson, David E. [2 ]
Charles, Stephen P. [3 ]
Grose, Michael R. [4 ]
Potter, Nicholas J. [1 ]
机构
[1] CSIRO Entomol, Canberra, ACT 2601, Australia
[2] CSIRO Environm, Clayton, Vic 3168, Australia
[3] CSIRO Environm, Floreat, WA 6014, Australia
[4] CSIRO Environm, Hobart, Tas 7004, Australia
关键词
Climate change; Runoff; Streamflow; Future projection; CMIP6; GCM; Australia; MILLENNIUM DROUGHT; BIAS CORRECTION; RAINFALL; IMPACT; PRECIPITATION; STATIONARITY; UNCERTAINTY; ADAPTATION; SCENARIOS;
D O I
10.1016/j.jhydrol.2024.131286
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Projections of streamflow under future climate are essential for developing adaptation strategies in the water and related sectors. This paper presents nationwide streamflow projections for Australia informed by climate change signals in CMIP6 GCMs and compares the projections with those from CMIP5 GCMs. The modelled future runoff projections driven by CMIP5 and CMIP6 GCMs are relatively similar for far southern Australia. The median projection is a 50% reduction in mean annual runoff in far southwest Australia and 20% reduction in far southeast Australia by 2046-2075 relative to 1976-2015 under the high SSP5-8.5/RCP8.5 global warming scenario. The vast majority of CMIP5 and CMIP6 GCMs project less winter rainfall across Australia. As most of the runoff in far southern Australia occurs in winter and spring, the lower winter rainfall translates to a significant reduction in annual runoff. It is therefore prudent to plan and manage for a reduction in future water resources, particularly in the densely populated and important agricultural regions in southeast Australia. There is less agreement between GCMs in the summer rainfall projection, with the CMIP6 GCMs generally projecting a wetter future (or smaller decrease in rainfall) than the CMIP5 GCMs. The modelled median projection for mean annual runoff is a 10% reduction in the south-east coast, 5% reduction in the north-east coast and little change in northern Australia. More GCMs project an increase rather than a decrease in the interannual variability of rainfall, and this would further amplify multi-year hydrological droughts.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Projections of Global Drought and Their Climate Drivers Using CMIP6 Global Climate Models
    Xu, Feng
    Bento, Virgilio A.
    Qu, Yanping
    Wang, Qianfeng
    WATER, 2023, 15 (12)
  • [2] Global mean thermosteric sea level projections by 2100 in CMIP6 climate models
    Jevrejeva, Svetlana
    Palanisamy, Hindumathi
    Jackson, Luke P.
    ENVIRONMENTAL RESEARCH LETTERS, 2021, 16 (01):
  • [3] Future Global River Ice in CMIP6 Models under Climate Change
    Lin, Yu
    Lu, Haishen
    Lindenschmidt, Karl-Erich
    Yu, Zhongbo
    Zhu, Yonghua
    Liu, Mingwen
    Chen, Tingxing
    JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2024, 63 (10) : 1191 - 1206
  • [4] Comparison of precipitation projections of CMIP5 and CMIP6 global climate models over Yulin, China
    Shiru, Mohammed Sanusi
    Chung, Eun-Sung
    Shahid, Shamsuddin
    Wang, Xiao-jun
    THEORETICAL AND APPLIED CLIMATOLOGY, 2022, 147 (1-2) : 535 - 548
  • [5] Comparison of precipitation projections of CMIP5 and CMIP6 global climate models over Yulin, China
    Mohammed Sanusi Shiru
    Eun-Sung Chung
    Shamsuddin Shahid
    Xiao-jun Wang
    Theoretical and Applied Climatology, 2022, 147 : 535 - 548
  • [6] Insights From CMIP6 for Australia's Future Climate
    Grose, M. R.
    Narsey, S.
    Delage, F. P.
    Dowdy, A. J.
    Bador, M.
    Boschat, G.
    Chung, C.
    Kajtar, J. B.
    Rauniyar, S.
    Freund, M. B.
    Lyu, K.
    Rashid, H.
    Zhang, X.
    Wales, S.
    Trenham, C.
    Holbrook, N. J.
    Cowan, T.
    Alexander, L.
    Arblaster, J. M.
    Power, S.
    EARTHS FUTURE, 2020, 8 (05)
  • [7] Global-scale future climate projections from ACCESS model contributions to CMIP6
    Schroeter, Serena
    Bi, Daohua
    Law, Rachel M.
    Loughran, Tammas F.
    Rashid, Harun A.
    Wang, Zhaohui
    JOURNAL OF SOUTHERN HEMISPHERE EARTH SYSTEMS SCIENCE, 2024, 74 (02):
  • [8] Future Global Convective Environments in CMIP6 Models
    Lepore, Chiara
    Abernathey, Ryan
    Henderson, Naomi
    Allen, John T.
    Tippett, Michael K.
    EARTHS FUTURE, 2021, 9 (12)
  • [9] Spatiotemporal projections of extreme precipitation over Algeria based on CMIP6 global climate models
    Sahabi-Abed, Salah
    Ayugi, Brian Odhiambo
    Selmane, Ahmed Nour-EL-Islam
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2023, 9 (03) : 3011 - 3028
  • [10] Spatiotemporal projections of precipitation and temperature over Afghanistan based on CMIP6 global climate models
    Farid Farhat
    Mohammad Tamim Kashifi
    Arshad Jamal
    Israel Saba
    Modeling Earth Systems and Environment, 2022, 8 : 4229 - 4242