Revisiting Optimal Convergence Rate for Smooth and Non-convex Stochastic Decentralized Optimization

被引:0
|
作者
Yuan, Kun [1 ,3 ]
Huang, Xinmeng [2 ]
Chen, Yiming [1 ,4 ]
Zhang, Xiaohan [2 ]
Zhang, Yingya [1 ]
Pan, Pan [1 ]
机构
[1] DAMO Acad, Alibaba Grp, Beijing, Peoples R China
[2] Univ Penn, Philadelphia, PA 19104 USA
[3] Peking Univ, Beijing, Peoples R China
[4] MetaCarbon, Beijing, Peoples R China
关键词
DISTRIBUTED OPTIMIZATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Decentralized optimization is effective to save communication in large-scale machine learning. Although numerous algorithms have been proposed with theoretical guarantees and empirical successes, the performance limits in decentralized optimization, especially the influence of network topology and its associated weight matrix on the optimal convergence rate, have not been fully understood. While Lu and Sa [44] have recently provided an optimal rate for non-convex stochastic decentralized optimization with weight matrices defined over linear graphs, the optimal rate with general weight matrices remains unclear. This paper revisits non-convex stochastic decentralized optimization and establishes an optimal convergence rate with general weight matrices. In addition, we also establish the optimal rate when non-convex loss functions further satisfy the Polyak-Lojasiewicz (PL) condition. Following existing lines of analysis in literature cannot achieve these results. Instead, we leverage the Ring-Lattice graph to admit general weight matrices while maintaining the optimal relation between the graph diameter and weight matrix connectivity. Lastly, we develop a new decentralized algorithm to nearly attain the above two optimal rates under additional mild conditions.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] An Improved Convergence Analysis for Decentralized Online Stochastic Non-Convex Optimization
    Xin, Ran
    Khan, Usman A.
    Kar, Soummya
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 1842 - 1858
  • [2] Decentralized Gradient-Free Methods for Stochastic Non-smooth Non-convex Optimization
    Lin, Zhenwei
    Xia, Jingfan
    Deng, Qi
    Luo, Luo
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 16, 2024, : 17477 - 17486
  • [3] Optimal, Stochastic, Non-smooth, Non-convex Optimization through Online-to-Non-convex Conversion
    Cutkosky, Ashok
    Mehta, Harsh
    Orabona, Francesco
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202
  • [4] Stochastic Optimization for DC Functions and Non-smooth Non-convex Regularizers with Non-asymptotic Convergence
    Xu, Yi
    Qi, Qi
    Lin, Qihang
    Jin, Rong
    Yang, Tianbao
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [5] Almost sure convergence of stochastic composite objective mirror descent for non-convex non-smooth optimization
    Liang, Yuqing
    Xu, Dongpo
    Zhang, Naimin
    Mandic, Danilo P.
    OPTIMIZATION LETTERS, 2024, 18 (09) : 2113 - 2131
  • [6] Convergence guarantees for a class of non-convex and non-smooth optimization problems
    Khamaru, Koulik
    Wainwright, Martin J.
    Journal of Machine Learning Research, 2019, 20
  • [7] Convergence guarantees for a class of non-convex and non-smooth optimization problems
    Khamaru, Koulik
    Wainwright, Martin J.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20
  • [8] Convergence guarantees for a class of non-convex and non-smooth optimization problems
    Khamaru, Koulik
    Wainwright, Martin J.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [9] A Decentralized Primal-Dual Framework for Non-Convex Smooth Consensus Optimization
    Mancino-Ball, Gabriel
    Xu, Yangyang
    Chen, Jie
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 525 - 538
  • [10] A Hybrid Variance-Reduced Method for Decentralized Stochastic Non-Convex Optimization
    Xin, Ran
    Khan, Usman A.
    Kar, Soummya
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139