Lyapunov-type inequality to general second-order elliptic equations

被引:0
|
作者
Oza, Priyank [1 ]
机构
[1] Indian Inst Technol Gandhinagar, Dept Math, Gandhinagar, Gujarat, India
关键词
Dirichlet and Neumann boundary value problem; Dirichlet form; non-symmetric semigroup; probabilistic representation; BOUNDARY-VALUE-PROBLEMS; STOCHASTIC DIFFERENTIAL-EQUATIONS; OPERATORS;
D O I
10.1002/mma.10297
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish Lyapunov-type inequality for equations concerning general class of second-order non-symmetric elliptic operators with singular coefficients. Our approach is based on the probabilistic representation of solutions and stochastic calculus. We also discuss a Lyapunov-type inequality for equations pertaining to second-order symmetric operator with some regularity assumptions on the coefficients and a nonlinear Neumann boundary condition.
引用
收藏
页码:14688 / 14698
页数:11
相关论文
共 50 条
  • [1] Lyapunov-type inequality for higher order difference equations
    Liu, Xin-Ge
    Tang, Mei-Lan
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 232 : 666 - 669
  • [2] Lyapunov-type inequalities for a relativistic second-order differential equation
    Ignatyev, A. O.
    APPLIED MATHEMATICS LETTERS, 2018, 84 : 124 - 129
  • [3] HARNACKS INEQUALITY FOR SECOND-ORDER ELLIPTIC CORDES-TYPE EQUATIONS
    LANDIS, EM
    DOKLADY AKADEMII NAUK SSSR, 1968, 179 (06): : 1272 - &
  • [4] Lyapunov-type inequality for a class of odd-order differential equations
    Yang, Xiaojing
    Kim, Yong-In
    Lo, Kueiming
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (10) : 2962 - 2968
  • [5] LYAPUNOV-TYPE INEQUALITY FOR HIGHER ORDER DYNAMIC EQUATIONS ON TIME SCALES
    Han, Caihong
    Su, Guangwang
    Sun, Taixiang
    Li, Lue
    Xia, Guoen
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2020, 11 (02): : 10 - 15
  • [6] Lyapunov-type inequality for a class of even-order differential equations
    Yang, Xiaojing
    Lo, Kueiming
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 215 (11) : 3884 - 3890
  • [7] Lyapunov-Type Inequalities for Second-Order Boundary Value Problems with a Parameter
    Liu, Haidong
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2020, 2020
  • [8] Lyapunov-type inequality for a class of even-order linear differential equations
    Yang, Xiaojing
    Kim, Yong-In
    Lo, Kueiming
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 245 : 145 - 151
  • [9] Harnack inequality for a class of second-order degenerate elliptic equations
    Alkhutov, Yu A.
    Khrenova, E. A.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2012, 278 (01) : 1 - 9
  • [10] Harnack inequality for a class of second-order degenerate elliptic equations
    Yu. A. Alkhutov
    E. A. Khrenova
    Proceedings of the Steklov Institute of Mathematics, 2012, 278 : 1 - 9