A near-optimal algorithm for approximating the John Ellipsoid

被引:0
|
作者
Cohen, Michael B. [1 ]
Cousins, Ben [2 ]
Lee, Yin Tat [3 ]
Yang, Xin [3 ]
机构
[1] MIT, Cambridge, MA 02139 USA
[2] Columbia Univ, New York, NY 10027 USA
[3] Univ Washington, Seattle, WA 98195 USA
来源
关键词
John Ellipsoid; fixed point method; optimal design; HIT-AND-RUN; VOLUME; COMPUTATION; COMPLEXITY; MODEL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We develop a simple and efficient algorithm for approximating the John Ellipsoid of a symmetric polytope. Our algorithm is near optimal in the sense that our time complexity matches the current best verification algorithm. Experimental results suggest that our algorithm significantly outperforms existing algorithms. We also provide the MATLAB code for further research.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] NEAR-OPTIMAL DECODING ALGORITHM
    KOROGODI.AM
    TELECOMMUNICATIONS AND RADIO ENGINEERING, 1972, 26 (09) : 130 - 132
  • [2] Fast and Near-Optimal Algorithms for Approximating Distributions by Histograms
    Acharya, Jayadev
    Diakonikolas, Ilias
    Hegde, Chinmay
    Li, Jerry
    Schmidt, Ludwig
    PODS'15: PROCEEDINGS OF THE 33RD ACM SYMPOSIUM ON PRINCIPLES OF DATABASE SYSTEMS, 2015, : 249 - 263
  • [3] REPLACEMENT POLICIES - A NEAR-OPTIMAL ALGORITHM
    JAYABALAN, V
    CHAUDHURI, D
    IIE TRANSACTIONS, 1995, 27 (06) : 784 - 788
  • [4] A Near-Optimal Algorithm for Estimating the Entropy of a Stream
    Chakrabarti, Amit
    Cormode, Graham
    Mcgregor, Andrew
    ACM TRANSACTIONS ON ALGORITHMS, 2010, 6 (03)
  • [5] AN ALGORITHM FOR NEAR-OPTIMAL PLACEMENT OF SENSOR ELEMENTS
    PEARSON, D
    PILLAI, SU
    LEE, YJ
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (06) : 1280 - 1284
  • [6] A Near-Optimal Algorithm for Computing the Entropy of a Stream
    Chakrabarti, Amit
    Cormode, Graham
    McGregor, Andrew
    PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2007, : 328 - 335
  • [7] Near-Optimal NP-Hardness of Approximating MAX k-CSPR
    Manurangsi, Pasin
    Nakkiran, Preetum
    Trevisan, Luca
    THEORY OF COMPUTING, 2022, 18 : 1 - 29
  • [8] Implementation of a Near-Optimal Complex Root Clustering Algorithm
    Imbach, Remi
    Pan, Victor Y.
    Yap, Chee
    MATHEMATICAL SOFTWARE - ICMS 2018, 2018, 10931 : 235 - 244
  • [9] DOTS: An online and near-optimal trajectory simplification algorithm
    Cao, Weiquan
    Li, Yunzhao
    JOURNAL OF SYSTEMS AND SOFTWARE, 2017, 126 : 34 - 44
  • [10] Near-Optimal Algorithm for Group Scheduling in OBS Networks
    Vo Viet Minh Nhat
    Nguyen Hong Quoc
    Nguyen Hoang Son
    ETRI JOURNAL, 2015, 37 (05) : 888 - 897