From Static to Dynamic: Knowledge Metabolism for Large Language Models

被引:0
|
作者
Du, Mingzhe [1 ,2 ]
Luu, Anh Tuan [1 ]
Ji, Bin [2 ]
Ng, See-Kiong [2 ]
机构
[1] Nanyang Technol Univ, Singapore, Singapore
[2] Natl Univ Singapore, Singapore, Singapore
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The immense parameter space of Large Language Models (LLMs) endows them with superior knowledge retention capabilities, allowing them to excel in a variety of natural language processing tasks. However, it also instigates difficulties in consistently tuning LLMs to incorporate the most recent knowledge, which may further lead LLMs to produce inaccurate and fabricated content. To alleviate this issue, we propose a knowledge metabolism framework for LLMs, which proactively sustains the credibility of knowledge through an auxiliary memory component and directly delivers pertinent knowledge for LLM inference, thereby suppressing hallucinations caused by obsolete internal knowledge during the LLM inference process. Benchmark experiments demonstrate DynaMind's effectiveness in overcoming this challenge. The code and demo of DynaMind are available at: https://github.com/Elfsong/DynaMind.
引用
收藏
页码:23784 / 23786
页数:3
相关论文
共 50 条
  • [1] Quo Vadis ChatGPT? From large language models to Large Knowledge Models
    Venkatasubramanian, Venkat
    Chakraborty, Arijit
    COMPUTERS & CHEMICAL ENGINEERING, 2025, 192
  • [2] Distilling Script Knowledge from Large Language Models for Constrained Language Planning
    Yuan, Siyu
    Chen, Jiangjie
    Fu, Ziquan
    Ge, Xuyang
    Shah, Soham
    Jankowski, Charles Robert
    Xiao, Yanghua
    Yang, Deqing
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 1, 2023, : 4303 - 4325
  • [3] Aligning Medical Images with General Knowledge from Large Language Models
    Fang, Xiao
    Lin, Yi
    Zhang, Dong
    Cheng, Kwang-Ting
    Chen, Hao
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT X, 2024, 15010 : 57 - 67
  • [4] Quantifying Domain Knowledge in Large Language Models
    Sayenju, Sudhashree
    Aygun, Ramazan
    Franks, Bill
    Johnston, Sereres
    Lee, George
    Choi, Hansook
    Modgil, Girish
    2023 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI, 2023, : 193 - 194
  • [5] Knowledge management in organization and the large language models
    Zelenkov, Yu. A.
    ROSSIISKII ZHURNAL MENEDZHMENTA-RUSSIAN MANAGEMENT JOURNAL, 2024, 22 (03): : 573 - 601
  • [6] Large language models encode clinical knowledge
    Singhal, Karan
    Azizi, Shekoofeh
    Tu, Tao
    Mahdavi, S. Sara
    Wei, Jason
    Chung, Hyung Won
    Scales, Nathan
    Tanwani, Ajay
    Cole-Lewis, Heather
    Pfohl, Stephen
    Payne, Perry
    Seneviratne, Martin
    Gamble, Paul
    Kelly, Chris
    Babiker, Abubakr
    Schaerli, Nathanael
    Chowdhery, Aakanksha
    Mansfield, Philip
    Demner-Fushman, Dina
    Arcas, Blaise Aguera y
    Webster, Dale
    Corrado, Greg S.
    Matias, Yossi
    Chou, Katherine
    Gottweis, Juraj
    Tomasev, Nenad
    Liu, Yun
    Rajkomar, Alvin
    Barral, Joelle
    Semturs, Christopher
    Karthikesalingam, Alan
    Natarajan, Vivek
    NATURE, 2023, 620 (7972) : 172 - +
  • [7] Debiasing Large Language Models with Structured Knowledge
    Ma, Congda
    Zhao, Tianyu
    Okumura, Manabu
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: ACL 2024, 2024, : 10274 - 10287
  • [8] Large language models encode clinical knowledge
    Karan Singhal
    Shekoofeh Azizi
    Tao Tu
    S. Sara Mahdavi
    Jason Wei
    Hyung Won Chung
    Nathan Scales
    Ajay Tanwani
    Heather Cole-Lewis
    Stephen Pfohl
    Perry Payne
    Martin Seneviratne
    Paul Gamble
    Chris Kelly
    Abubakr Babiker
    Nathanael Schärli
    Aakanksha Chowdhery
    Philip Mansfield
    Dina Demner-Fushman
    Blaise Agüera y Arcas
    Dale Webster
    Greg S. Corrado
    Yossi Matias
    Katherine Chou
    Juraj Gottweis
    Nenad Tomasev
    Yun Liu
    Alvin Rajkomar
    Joelle Barral
    Christopher Semturs
    Alan Karthikesalingam
    Vivek Natarajan
    Nature, 2023, 620 : 172 - 180
  • [9] Do large language models "understand" their knowledge?
    Venkatasubramanian, Venkat
    AICHE JOURNAL, 2025, 71 (03)
  • [10] Evaluating Intelligence and Knowledge in Large Language Models
    Bianchini, Francesco
    TOPOI-AN INTERNATIONAL REVIEW OF PHILOSOPHY, 2025, 44 (01): : 163 - 173