Effect of ammonia addition on nanostructure of soot in laminar coflow diffusion flames of ethylene diluted with nitrogen

被引:5
|
作者
Zheng, Jingru [1 ]
Hu, Longhua [1 ]
Chung, Suk Ho [2 ]
机构
[1] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Anhui, Peoples R China
[2] King Abdullah Univ Sci & Technol, Clean Combust Res Ctr, Thuwal 239556900, Saudi Arabia
基金
中国国家自然科学基金;
关键词
Ammonia; Soot growth; Laminar diffusion flame; TEM; HRTEM; XPS; PARTICLES; CARBON; HRTEM; REACTIVITY; COMBUSTION; MORPHOLOGY; PRESSURES; OXIDATION; CHEMISTRY; GROWTH;
D O I
10.1016/j.proci.2024.105392
中图分类号
O414.1 [热力学];
学科分类号
摘要
The effect of ammonia addition on the nanostructure of soot particles was studied experimentally for ethylene diffusion flames. To compensate the thermal effect and nitrogen-containing species production when ammonia was added, the total mole fraction of ammonia and nitrogen was fixed in the fuel stream. Soot particle size, fringe length, and fringe tortuosity were measured through transmission electron microscopy (TEM) and highresolution transmission electron microscopy (HRTEM). A complementary X-ray photoelectron spectroscopy (XPS) analysis provided information about the chemical bonding of soot. A significant delay in soot growth was observed and the particle size increased with the addition of ammonia. While there was no obvious correlation between the fractal dimension of soot and ammonia mole fraction (XNH3) or sampling location. With the addition of ammonia, the mean fringe length increased reasonably linearly with XNH3 and the fringe tortuosity increased up to XNH3 approximate to 0.17 and then decreased with XNH3, which suggested that ammonia addition led to higher graphitization and lower oxidative activity. The soot from ammonia diluted flame exhibited lower reactivity, implying the delay of soot surface growth. With the addition of ammonia, the value of sp2/sp3 (indication of the graphitization degree of soot particles) did not change much for XNH3 from 0 to 0.17 then increased significantly, which indicated the degree of graphitization of soot particles significantly increased with ammonia addition. The intensity of the N1s peak (indication of the N-containing species in soot) increased with the addition of ammonia. This study confirmed that the addition of NH3 promotes the graphitization of soot.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] The effect of ammonia addition on soot nanostructure and composition in ethylene laminar flames
    Zaher, Mohammed H.
    Dadsetan, Mehran
    Chu, Carson
    Thomson, Murray J.
    COMBUSTION AND FLAME, 2023, 251
  • [2] Effect of oxygen contents on morphology, nanostructure, and its formation of soot in laminar coflow ethylene-ammonia diffusion flames
    Qian, Weiwei
    Shi, Xiuyong
    Li, Song
    Shuai, Shijin
    Kang, Jiaojiao
    FUEL, 2025, 382
  • [3] Synergistic Effect of Mixing Ethylene with Propane on the Morphology and Nanostructure of Soot in Laminar Coflow Diffusion Flames
    Li, Qianqian
    Wang, Liangchen
    Yang, Rong
    Yan, Zhiyu
    Song, Chen
    Huang, Zuohua
    JOURNAL OF ENERGY ENGINEERING, 2022, 148 (01)
  • [4] Effects of ammonia addition on soot formation in ethylene laminar diffusion flames
    Liu, Yang
    Cheng, Xiaobei
    Li, Yu
    Qiu, Liang
    Wang, Xin
    Xu, Yishu
    FUEL, 2021, 292
  • [5] Different chemical effect of hydrogen addition on soot formation in laminar coflow methane and ethylene diffusion flames
    Wang, Yang
    Gu, Mingyan
    Chao, Ling
    Wu, Jiajia
    Lin, Yuyu
    Huang, Xiangyong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (29) : 16063 - 16074
  • [6] Modeling soot formation in laminar coflow ethylene inverse diffusion flames
    Demarco, Rodrigo
    Jerez, Alejandro
    Liu, Fengshan
    Chen, Longfei
    Fuentes, Andres
    COMBUSTION AND FLAME, 2021, 232
  • [7] Effects of ammonia addition on soot formation in ethylene laminar diffusion flames. Part 3. The morphology and nanostructure of soot particles
    Liu, Yang
    Xu, Yishu
    Zhang, Kai
    Zhang, Pu
    Cheng, Xiaobei
    FUEL, 2023, 332
  • [8] Physical and Chemical Effects of Ammonia on Gas Emissions and Soot Formation in Laminar Coflow Ethylene Diffusion Flames
    Qian, Weiwei
    Shi, Xiuyong
    Li, Song
    ENERGY & FUELS, 2024, 38 (12) : 11292 - 11310
  • [9] Soot inception in laminar coflow diffusion flames
    Bartosa, Daniel
    Sirignano, Mariano
    Dunn, Matthew J.
    D'Anna, Andrea
    Masri, Assaad Rachid
    COMBUSTION AND FLAME, 2019, 205 : 180 - 192
  • [10] The influence of nitrogen and hydrogen addition/dilution on soot formation in coflow ethylene/air diffusion flames
    Khanehzar, Andisheh
    Cepeda, Francisco
    Dworkin, Seth B.
    FUEL, 2022, 309