High-throughput Phenotyping of Maize Roots Using Digital Image Analysis

被引:0
|
作者
Coronado-Aleans, Veronica [1 ]
Barrera-Sanchez, Carlos F. [1 ]
Guzman, Manuel [2 ]
机构
[1] Univ Nacl Colombia, Medellin, Colombia
[2] Corp Colombiana Invest Agr Agrosavia AGROSAVIA, Rionegro, Colombia
来源
关键词
Breeding; combining methods; maize; REST; root traits; USE EFFICIENCY; PHENES; PLANTS; TRAITS; SYSTEM; INTEGRATION; GROWTH;
D O I
10.21930/rcta.vol25_num1_art:3312
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Recent research on maize root architecture has made significant progress, but further research is needed to optimize methods for efficient and accurate acquisition of root architecture data. This study aimed to assess the effectiveness of digital imaging for root phenotyping of Zea mays L. Field experiments were carried out at two locations in the province of Antioquia, Colombia, in 2019 and 2020 to analyze root architecture variables of 12 genotypes of maize. Two methodologies were used: manual phenotyping and digital image analysis. Pearson's correlation coefficients among variables were estimated. Principal Component Analysis (PCA) was used to summarize and uncover clustering patterns in the multivariate data set. The results indicated correlations between diameter ( r = 0.94) and manually measured root diameter. The manually measured right and left root angles correlated with image -derived root angle at r = 0.92 and 0.88, respectively, and root length at r = 0.62. The PCA highlighted that the digital method explained the highest proportion of variation in root areas and diameters, while the manual method dominated in root angle variables. These results corroborate a feasible method to optimize root architecture phenotyping for research questions. This protocol can be adopted under the automatic analysis with REST software for acquiring images of variables associated with roots' angle, length, and diameter.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] High-throughput phenotyping technology for maize roots
    Grift, T. E.
    Novais, J.
    Bohn, M.
    BIOSYSTEMS ENGINEERING, 2011, 110 (01) : 40 - 48
  • [2] High-Throughput Phenotyping of Seed/Seedling Evaluation Using Digital Image Analysis
    Zhang, Chongyuan
    Si, Yongsheng
    Lamkey, Jacob
    Boydston, Rick A.
    Garland-Campbell, Kimberly A.
    Sankaran, Sindhuja
    AGRONOMY-BASEL, 2018, 8 (05):
  • [3] Maize-IAS: a maize image analysis software using deep learning for high-throughput plant phenotyping
    Shuo Zhou
    Xiujuan Chai
    Zixuan Yang
    Hongwu Wang
    Chenxue Yang
    Tan Sun
    Plant Methods, 17
  • [4] Iterative image segmentation of plant roots for high-throughput phenotyping
    Kyle Seidenthal
    Karim Panjvani
    Rahul Chandnani
    Leon Kochian
    Mark Eramian
    Scientific Reports, 12
  • [5] Maize-IAS: a maize image analysis software using deep learning for high-throughput plant phenotyping
    Zhou, Shuo
    Chai, Xiujuan
    Yang, Zixuan
    Wang, Hongwu
    Yang, Chenxue
    Sun, Tan
    PLANT METHODS, 2021, 17 (01)
  • [6] Iterative image segmentation of plant roots for high-throughput phenotyping
    Seidenthal, Kyle
    Panjvani, Karim
    Chandnani, Rahul
    Kochian, Leon
    Eramian, Mark
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [7] Image-Based High-Throughput Field Phenotyping of Crop Roots
    Bucksch, Alexander
    Burridge, James
    York, Larry M.
    Das, Abhiram
    Nord, Eric
    Weitz, Joshua S.
    Lynch, Jonathan P.
    PLANT PHYSIOLOGY, 2014, 166 (02) : 470 - 486
  • [8] Leveraging Image Analysis for High-Throughput Plant Phenotyping
    Choudhury, Sruti Das
    Samal, Ashok
    Awada, Tala
    FRONTIERS IN PLANT SCIENCE, 2019, 10
  • [9] High-Throughput Phenotyping: Application in Maize Breeding
    Resende, Ewerton Lelys
    Bruzi, Adriano Teodoro
    Cardoso, Everton da Silva
    Carneiro, Vinicius Quintao
    Pereira de Souza, Vitorio Antonio
    Frois Correa Barros, Paulo Henrique
    Pereira, Raphael Rodrigues
    AGRIENGINEERING, 2024, 6 (02): : 1078 - 1092
  • [10] HTPheno: An image analysis pipeline for high-throughput plant phenotyping
    Anja Hartmann
    Tobias Czauderna
    Roberto Hoffmann
    Nils Stein
    Falk Schreiber
    BMC Bioinformatics, 12