Anomalous diffusion of scaled Brownian tracers

被引:1
|
作者
Sevilla, Francisco J. [1 ]
Valdes-Gomez, Adriano [2 ,3 ]
Torres-Carbajal, Alexis [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Fis, POB 20-364, Ciudad De Mexico 01000, Mexico
[2] AI Factory BBVA Mexico, Mexico City, Mexico
[3] Univ Nacl Autonoma Mexico, Fac Ciencias, Ciudad De Mexico 04510, Mexico
关键词
EQUATION;
D O I
10.1103/PhysRevE.110.014113
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A model for anomalous transport of tracer particles diffusing in complex media in two dimensions is proposed. The model takes into account the characteristics of persistent motion that an active bath transfers to the tracer; thus, the model proposed here extends active Brownian motion, for which the stochastic dynamics of the orientation of the propelling force is described by scaled Brownian motion (sBm), identified by time-dependent diffusivity of the form D-beta proportional to t(beta-1), beta > 0. If beta not equal 1, sBm is highly nonstationary and suitable to describe such nonequilibrium dynamics induced by complex media. In this paper, we provide analytical calculations and computer simulations to show that genuine anomalous diffusion emerges in the long-time regime, with a time scaling of the mean-squared displacement t(2-beta), while ballistic transport t(2), characteristic of persistent motion, is found in the short-time regime. We also analyze the time dependence of the kurtosis, and the intermediate scattering function of the position distribution, as well as the propulsion autocorrelation function, which defines the effective persistence time.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Scaled Brownian motion with random anomalous diffusion exponent
    Woszczek, Hubert
    Chechkin, Aleksei
    Wylomanska, Agnieszka
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 140
  • [2] Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion
    Bodrova, Anna S.
    Chechkin, Aleksei V.
    Cherstvy, Andrey G.
    Safdari, Hadiseh
    Sokolov, Igor M.
    Metzler, Ralf
    SCIENTIFIC REPORTS, 2016, 6
  • [3] Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion
    Anna S. Bodrova
    Aleksei V. Chechkin
    Andrey G. Cherstvy
    Hadiseh Safdari
    Igor M. Sokolov
    Ralf Metzler
    Scientific Reports, 6
  • [4] Anomalous non-Gaussian diffusion of scaled Brownian motion in a quenched disorder environment
    Suleiman, Kheder
    Li, Yongge
    Xu, Yong
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (11)
  • [5] Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion
    Jeon, Jae-Hyung
    Chechkin, Aleksei V.
    Metzler, Ralf
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (30) : 15811 - 15817
  • [6] Superstatistical approach of the anomalous exponent for scaled Brownian motion
    dos Santos, M. A. F.
    Menon, L.
    Cius, D.
    CHAOS SOLITONS & FRACTALS, 2022, 164
  • [7] Diffusion of interacting Brownian particles: Jamming and anomalous diffusion
    Savel'ev, Sergey
    Marchesoni, Fabio
    Taloni, Alessandro
    Nori, Franco
    PHYSICAL REVIEW E, 2006, 74 (02):
  • [8] Anomalous diffusion, aging, and nonergodicity of scaled Brownian motion with fractional Gaussian noise: overview of related experimental observations and models
    Wang, Wei
    Metzler, Ralf
    Cherstvy, Andrey G.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (31) : 18482 - 18504
  • [9] Anomalous diffusion, non-Gaussianity, nonergodicity, and confinement in stochastic-scaled Brownian motion with diffusing diffusivity dynamics
    Li, Yongge
    Suleiman, Kheder
    Xu, Yong
    PHYSICAL REVIEW E, 2024, 109 (01)
  • [10] ANOMALOUS DIFFUSION - THE THINNING PROPERTY OF FRACTIONAL BROWNIAN MOTION
    Sikora, Grzegorz
    ACTA PHYSICA POLONICA B, 2012, 43 (05): : 1157 - 1167