Explainable Multimodal Learning in Remote Sensing: Challenges and Future Directions

被引:0
|
作者
Guenther, Alexander [1 ]
Najjar, Hiba [1 ,2 ]
Dengel, Andreas [1 ,2 ]
机构
[1] Univ Kaiserslautern Landau, Dept Comp Sci, D-67663 Kaiserslautern, Germany
[2] German Res Ctr Artificial Intelligence DFKI, Dept Comp Sci, D-67663 Kaiserslautern, Germany
关键词
Deep learning (DL); Earth observation; explainability; interpretability; multimodal learning; remote sensing (RS); ARTIFICIAL-INTELLIGENCE;
D O I
10.1109/LGRS.2024.3404596
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Earth observation applications effectively leverage deep learning (DL) models to harness the abundantly available remote sensing (RS) data. In order to use all the different modalities relevant to a specific task, the fusion of these data sources can be achieved using multimodal learning techniques. This is especially helpful when the input dataset contains both images and tabular data or when the temporal and spatial resolutions vary across the modalities of interest. Nevertheless, these fusion techniques typically increase in complexity, as the disparities in the nature of the fused modalities increase. The resulting complex DL models suffer from a lack of explainability and transparency, which is crucial in many sensitive human-related applications. In this letter, we describe how the research community in RS addresses the issue of model explainability in the context of multimodal learning. We additionally review the practices used in other application fields and identify some of the most promising explainability methods tailored for multimodal deep networks to be exploited in RS applications.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [1] Current Challenges and Future Research Directions in Multimodal Explainable Artificial Intelligence
    Rodis, Nikolaos
    Sardianos, Christos
    Papadopoulos, Georgios Th.
    ERCIM NEWS, 2023, (134):
  • [2] Multimodal Classification of Remote Sensing Images: A Review and Future Directions
    Gomez-Chova, Luis
    Tuia, Devis
    Moser, Gabriele
    Camps-Valls, Gustau
    PROCEEDINGS OF THE IEEE, 2015, 103 (09) : 1560 - 1584
  • [3] Remote sensing of inland waters: Challenges, progress and future directions
    Palmer, Stephanie C. J.
    Kutser, Tiit
    Hunter, Peter D.
    REMOTE SENSING OF ENVIRONMENT, 2015, 157 : 1 - 8
  • [4] Explainable AI for SE: Challenges and Future Directions
    Tantithamthavorn, Chakkrit
    Cito, Jurgen
    Hemmati, Hadi
    Chandra, Satish
    IEEE SOFTWARE, 2023, 40 (03) : 29 - 33
  • [5] Multimodal Emotion Recognition with Deep Learning: Advancements, challenges, and future directions
    Geetha, A., V
    Mala, T.
    Priyanka, D.
    Uma, E.
    INFORMATION FUSION, 2024, 105
  • [6] Future directions in ocean remote sensing
    Schwartz, PR
    MARINE TECHNOLOGY SOCIETY JOURNAL, 2004, 38 (02) : 109 - 120
  • [7] Remote Sensing Image Retrieval in the Past Decade: Achievements, Challenges, and Future Directions
    Zhou, Weixun
    Guan, Haiyan
    Li, Ziyu
    Shao, Zhenfeng
    Delavar, Mahmoud R. R.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 1447 - 1473
  • [8] Passive Microwave Remote Sensing of Snow Depth: Techniques, Challenges and Future Directions
    Tanniru, Srinivasarao
    Ramsankaran, Raaj
    REMOTE SENSING, 2023, 15 (04)
  • [9] Deep learning techniques for remote sensing image scene classification: A comprehensive review, current challenges, and future directions
    Kumari, Monika
    Kaul, Ajay
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (22):
  • [10] Framing the concept of satellite remote sensing essential biodiversity variables: challenges and future directions
    Pettorelli, Nathalie
    Wegmann, Martin
    Skidmore, Andrew
    Mucher, Sander
    Dawson, Terence P.
    Fernandez, Miguel
    Lucas, Richard
    Schaepman, Michael E.
    Wang, Tiejun
    O'Connor, Brian
    Jongman, Robert H. G.
    Kempeneers, Pieter
    Sonnenschein, Ruth
    Leidner, Allison K.
    Bohm, Monika
    He, Kate S.
    Nagendra, Harini
    Dubois, Gregoire
    Fatoyinbo, Temilola
    Hansen, Matthew C.
    Paganini, Marc
    de Klerk, Helen M.
    Asner, Gregory P.
    Kerr, Jeremy T.
    Estes, Anna B.
    Schmeller, Dirk S.
    Heiden, Uta
    Rocchini, Duccio
    Pereira, Henrique M.
    Turak, Eren
    Fernandez, Nestor
    Lausch, Angela
    Cho, Moses A.
    Alcaraz-Segura, Domingo
    McGeoch, Melodie A.
    Turner, Woody
    Mueller, Andreas
    St-Louis, Veronique
    Penner, Johannes
    Vihervaara, Petteri
    Belward, Alan
    Reyers, Belinda
    Geller, Gary N.
    REMOTE SENSING IN ECOLOGY AND CONSERVATION, 2016, 2 (03) : 122 - 131