Human-Guided Complexity-Controlled Abstractions

被引:0
|
作者
Peng, Andi [1 ]
Tucker, Mycal [1 ]
Kenny, Eoin M. [1 ]
Zaslavsky, Noga [2 ]
Agrawal, Pulkit [1 ]
Shah, Julie A. [1 ]
机构
[1] MIT, Cambridge, MA 02139 USA
[2] UC Irvine, Irvine, CA USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neural networks often learn task-specific latent representations that fail to generalize to novel settings or tasks. Conversely, humans learn discrete representations (i.e., concepts or words) at a variety of abstraction levels (e.g., "bird" vs. "sparrow") and deploy the appropriate abstraction based on task. Inspired by this, we train neural models to generate a spectrum of discrete representations and control the complexity of the representations (roughly, how many bits are allocated for encoding inputs) by tuning the entropy of the distribution over representations. In finetuning experiments, using only a small number of labeled examples for a new task, we show that (1) tuning the representation to a task-appropriate complexity level supports the highest finetuning performance, and (2) in a human-participant study, users were able to identify the appropriate complexity level for a downstream task using visualizations of discrete representations. Our results indicate a promising direction for rapid model finetuning by leveraging human insight.
引用
收藏
页数:40
相关论文
共 50 条
  • [1] Human-guided search
    Klau, Gunnar W.
    Lesh, Neal
    Marks, Joe
    Mitzenmacher, Michael
    JOURNAL OF HEURISTICS, 2010, 16 (03) : 289 - 310
  • [2] Human-guided search
    Gunnar W. Klau
    Neal Lesh
    Joe Marks
    Michael Mitzenmacher
    Journal of Heuristics, 2010, 16 : 289 - 310
  • [3] An introduction to human-guided search
    Mitzenmacher, Michael
    XRDS: Crossroads, 2010, 17 (02): : 34 - 35
  • [4] Human-guided tabu search
    Klan, GW
    Lesh, N
    Marks, J
    Mitzenmacher, M
    EIGHTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-02)/FOURTEENTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-02), PROCEEDINGS, 2002, : 41 - 47
  • [5] Towards Human-Guided Machine Learning
    Gil, Yolanda
    Honaker, James
    Gupta, Shikhar
    Ma, Yibo
    D'Orazio, Vito
    Garijo, Daniel
    Gadewar, Shruti
    Yang, Qifan
    Jahanshad, Neda
    PROCEEDINGS OF IUI 2019, 2019, : 614 - 624
  • [6] Human-guided simple search
    Anderson, D
    Anderson, E
    Lesh, N
    Marks, J
    Mirtich, B
    Ratajczak, D
    Ryall, K
    SEVENTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-2001) / TWELFTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-2000), 2000, : 209 - 216
  • [7] Supervised Human-Guided Data Exploration
    Oikarinen, Emilia
    Puolamaki, Kai
    Khoshrou, Samaneh
    Pechenizkiy, Mykola
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT I, 2020, 1167 : 85 - 101
  • [8] Human-Guided Multirobot Cooperative Manipulation
    Sieber, Dominik
    Hirche, Sandra
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2019, 27 (04) : 1492 - 1509
  • [9] Human-Guided Evolutionary Story Narration
    Wang, Kun
    Vinh Bui
    Petraki, Eleni
    Abbass, Hussein A.
    IEEE ACCESS, 2018, 6 : 13783 - 13802
  • [10] Human-Guided Robotic Manipulation: Theory and Experiments
    Li, X.
    Cheah, C. C.
    2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 4594 - 4599