IDENTIFICATION OF DYNAMIC COEFFICIENTS OF A FIVE-PAD TILTING PAD JOURNAL BEARING UP TO HIGHEST SURFACE SPEEDS

被引:0
|
作者
Zemella, Philipp [1 ]
Hagemann, Thomas [1 ]
Pfau, Bastian [2 ]
Schwarze, Hubert [1 ]
机构
[1] Tech Univ Clausthal, Clausthal Zellerfeld, Germany
[2] JM Voith SE, Crailsheim, Germany
关键词
ROTORDYNAMIC COEFFICIENTS;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Tilting-pad journal bearings are widely used in turbomachinery industry due to their positive dynamic properties at high rotor speeds. However, the exact description of this dynamic behavior is still part of current research. This paper presents measurement results for a five-pad tilting-pad journal bearing in load between pivot configuration. The bearing is characterized by a nominal diameter of 100 mm, a length of 90 mm, and a pivot offset of 0.6. Investigations include results for surface speeds between 25 and 120 m/s and specific bearing loads ranging from 0.0 to 3.0 MPa. Results of theoretical predictions are commonly derived from perturbation of stationary operation under static load. Therefore, experimental results for stationary operation including pad deflection under static load are presented first to characterize the investigated bearing. Measured results indicate considerable non-laminar flow in the upper region of the investigated range of rotor speeds. Second, dynamic excitation test are performed with excitation frequencies up to 400 Hz to evaluate dynamic coefficients of a stiffness (K) and damping (C) KC-model, and additionally, a KCM-model using additional virtual mass (M) coefficients. KCM-coefficients are obtained by fitting frequency dependent KC-characteristics to the KCM-model structure using least square approach. The wide range of rotating and excitation frequencies leads to subsynchronous as well as supersynchronous vibrations. Excitation forces are applied with multi-sinus and single-sinus characteristics. The latter one allows evaluation of KC-coefficients at the particular frequency ratio in the time domain. Here, frequency and time domain evaluation algorithms for dynamic coefficients are used in order to assess their special properties and quality. The impact of surface speed, bearing load, and oil flow rate on measured and predicted KCM-coefficients is investigated. Measured and predicted results can be well fitted to a KCM-model and show a significant influence of the ratio between fluid film and pivot support stiffness on the speed dependent characteristic of bearing stiffness coefficients. However, the impact of this ratio on damping coefficients is considerably lower. Further investigations on the impact of oil flow rates indicate that a significant decrease of direct damping coefficients exists below a certain level of starvation. Above this limit, direct damping coefficients are nearly independent of oil flow rate. Results are analyzed in detail and demands on improvements for predictions are derived.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Identification of Dynamic Coefficients of a Five-Pad Tilting Pad Journal Bearing Up to Highest Surface Speeds
    Zemella, Philipp
    Hagemann, Thomas
    Pfau, Bastian
    Schwarze, Hubert
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2021, 143 (08):
  • [2] Experimental and theoretical investigations on transition of lubrication conditions for a five-pad tilting-pad journal bearing with eccentric pivot up to highest surface speeds
    Hagemann, Thomas
    Zemella, Philipp
    Pfau, Bastian
    Schwarze, Hubert
    TRIBOLOGY INTERNATIONAL, 2020, 142
  • [3] Excitation frequency effects on the stiffness and damping coefficients of a five-pad tilting pad journal bearing
    Ha, HC
    Yang, SH
    JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME, 1999, 121 (03): : 517 - 522
  • [4] Excitation frequency effects on the stiffness and damping coefficients of a five-pad tilting pad journal bearing
    Research and Development Center, HANJUNG, Korea Heavy Indust./Constr. Co., L., 555 Guygok-Dong, Changwon, Kyungnam, 641-792, Korea, Republic of
    J. Tribol., 3 (517-522):
  • [5] Optimization and thermohydrodynamic analysis of five-pad tilting pad journal bearing with MOPSO algorithm
    Mikaeeli, S. Zahra
    Aghanajafi, Cyrusi
    INDUSTRIAL LUBRICATION AND TRIBOLOGY, 2025,
  • [6] Static Characteristics of a Tilting Five-Pad Journal Bearing with an Asymmetric Geometry
    Dang, Phuoc Vinh
    Chatterton, Steven
    Pennacchi, Paolo
    ACTUATORS, 2020, 9 (03)
  • [7] Identification and Prediction of Force Coefficients in a Five-Pad and Four-Pad Tilting Pad Bearing for Load-on-Pad and Load-Between-Pad Configurations
    Delgado, Adolfo
    Vannini, Giuseppe
    Ertas, Bugra
    Drexel, Michael
    Naldi, Lorenzo
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2011, 133 (09):
  • [8] THE INFLUENCE OF PAD FLEXIBILITY ON THE DYNAMIC COEFFICIENTS OF A TILTING PAD JOURNAL BEARING
    LUND, JW
    PEDERSEN, LB
    JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME, 1987, 109 (01): : 65 - 70
  • [9] IDENTIFICATION AND PREDICTION OF FORCE COEFFICIENTS IN A FIVE-PAD AND FOUR-PAD TILTING PAD BEARING FOR LOAD-ON-PAD AND LOAD-BETWEEN-PAD CONFIGURATIONS
    Delgado, Adolfo
    Vannini, Giuseppe
    Ertas, Bugra
    Drexel, Michael
    Naldi, Lorenzo
    PROCEEDINGS OF THE ASME TURBO EXPO 2010, VOL 6, PTS A AND B, 2010, : 463 - 472
  • [10] A Statistical Method to Compute the Dynamic Coefficients of a Tilting Pad Journal Bearing
    Barsanti, Michele
    Ciulli, Enrico
    Mechanisms and Machine Science, 2024, 163 MMS : 482 - 489