Bounded Fatou and Julia components of meromorphic functions

被引:0
|
作者
Marti-Pete, David [1 ]
Rempe, Lasse [1 ]
Waterman, James [2 ]
机构
[1] Univ Liverpool, Dept Math Sci, Liverpool L69 7ZL, England
[2] SUNY Stony Brook, Inst Math Sci, Stony Brook, NY 11794 USA
关键词
Primary; 37F10; Secondary; 30D05; 37B45; 54F15; CONNECTED WANDERING DOMAINS; ITERATION; DYNAMICS;
D O I
10.1007/s00208-023-02725-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We completely characterise the bounded sets that arise as components of the Fatou and Julia sets of meromorphic functions. On the one hand, we prove that a bounded domain is a Fatou component of some meromorphic function if and only if it is regular. On the other hand, we prove that a planar continuum is a Julia component of some meromorphic function if and only if it has empty interior. We do so by constructing meromorphic functions with wandering compacta using approximation theory.
引用
收藏
页码:95 / 111
页数:17
相关论文
共 50 条
  • [1] Bounded Fatou and Julia components of meromorphic functionsBounded Fatou and Julia components of meromorphic functionsD. Martí-Pete et al.
    David Martí-Pete
    Lasse Rempe
    James Waterman
    Mathematische Annalen, 2025, 391 (1) : 95 - 111
  • [2] Periodic Fatou components of meromorphic functions
    Bolsch, A
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1999, 31 : 543 - 555
  • [3] Fatou components and singularities of meromorphic functions
    Baranski, Krzysztof
    Fagella, Nuria
    Jarque, Xavier
    Karpinska, Boguslawa
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (02) : 633 - 654
  • [4] Some properties of Fatou and Julia sets of transcendental meromorphic functions
    Zheng, JH
    Sheng, W
    Zhi-Gang, H
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 66 (01) : 1 - 8
  • [5] Iterates of meromorphic functions on escaping Fatou components
    Zheng, Jian-Hua
    Wu, Cheng-Fa
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023, 153 (06) : 1906 - 1928
  • [6] Boundedness of components of Fatou sets of entire and meromorphic functions
    Zheng, JH
    Wang, S
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2004, 35 (10): : 1137 - 1148
  • [7] Hyperbolic entire functions with bounded Fatou components
    Bergweiler, Walter
    Fagella, Nuria
    Rempe-Gillen, Lasse
    COMMENTARII MATHEMATICI HELVETICI, 2015, 90 (04) : 799 - 829
  • [8] On multiply-connected Fatou components in iteration of meromorphic functions
    Zheng, HH
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 313 (01) : 24 - 37
  • [9] Local connectivity of boundaries of tame Fatou components of meromorphic functions
    Baranski, Krzysztof
    Fagella, Nuria
    Jarque, Xavier
    Karpinska, Boguslawa
    MATHEMATISCHE ANNALEN, 2025, 391 (02) : 1779 - 1843
  • [10] Orbifold expansion and entire functions with bounded Fatou components
    Pardo-Simon, Leticia
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2022, 42 (05) : 1807 - 1846