Transmission line revisited - the impedance of mixed ionic and electronic conductors

被引:8
|
作者
Bumberger, Andreas E. [1 ]
Nenning, Andreas [1 ]
Fleig, Juergen [1 ]
机构
[1] Inst Chem Technol & Analyt, TU Wien, Vienna, Austria
关键词
YTTRIA-STABILIZED ZIRCONIA; OXYGEN-EXCHANGE KINETICS; THIN-FILMS; ELECTRICAL-PROPERTIES; CHEMICAL CAPACITANCE; CONDUCTIVITY; MODEL; TRANSPORT; CELLS; SPECTROSCOPY;
D O I
10.1039/d4cp00975d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This contribution provides a comprehensive guide for evaluating the one-dimensional impedance response of dense mixed ionic and electronic conductors based on a physically derived transmission line model. While mass and charge transport through the bulk of a mixed conductor is always described by three fundamental parameters (chemical capacitance, ionic conductivity and electronic conductivity), it is the nature of the contact interfaces that largely determines the observed impedance response. Thus, to allow an intuitive adaptation of the transmission line model for any specific measurement situation, the physical meanings of terminal impedance elements at the ionic and electronic rail ends are explicitly discussed. By distinguishing between charge transfer terminals and electrochemical reaction terminals, the range of possible measurement configurations is categorized into symmetrical, SOFC-type and battery-type setups, all of which are explored on the basis of practical examples from the literature. Also, the transformation of an SOFC electrode into a battery electrode and the relevance of side reactions for the impedance of battery electrodes is discussed. A highly intuitive, yet physically meaningful approach to understanding the impedance of MIECs based on a four-terminal transmission line model.
引用
收藏
页码:15068 / 15089
页数:22
相关论文
共 50 条
  • [1] Polymeric mixed ionic electronic conductors
    Riess, I
    SOLID STATE IONICS, 2000, 136 : 1119 - 1130
  • [2] Organic mixed ionic–electronic conductors
    Bryan D. Paulsen
    Klas Tybrandt
    Eleni Stavrinidou
    Jonathan Rivnay
    Nature Materials, 2020, 19 : 13 - 26
  • [3] On the fundamentals of organic mixed ionic/electronic conductors
    Fabiano, Simone
    Flagg, Lucas
    Hidalgo Castillo, Tania C.
    Inal, Sahika
    Kaake, Loren G.
    Kayser, Laure V.
    Keene, Scott T.
    Ludwigs, Sabine
    Muller, Christian
    Savoie, Brett M.
    Luessem, Bjoern
    Lutkenhaus, Jodie L.
    Matta, Micaela
    Meli, Dilara
    Patel, Shrayesh N.
    Paulsen, Bryan D.
    Rivnay, Jonathan
    Surgailis, Jokubas
    JOURNAL OF MATERIALS CHEMISTRY C, 2023, 11 (42) : 14527 - 14539
  • [4] Organic mixed ionic-electronic conductors
    Paulsen, Bryan D.
    Tybrandt, Klas
    Stavrinidou, Eleni
    Rivnay, Jonathan
    NATURE MATERIALS, 2020, 19 (01) : 13 - 26
  • [5] From Onsager to mixed ionic electronic conductors
    Lee, Taewon
    Kim, Hong-Seok
    Yoo, Han-Ill
    SOLID STATE IONICS, 2014, 262 : 2 - 8
  • [6] Thermoelectric power in ionic and electronic mixed conductors
    Kamata, M
    JinNouchi, K
    Esaka, T
    DENKI KAGAKU, 1996, 64 (08): : 897 - 902
  • [7] Electronic structures of mixed ionic-electronic conductors SrCoOx
    Tapilin, Vladimir M.
    Cholach, Alexander R.
    Bulgakov, Nikolai N.
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2010, 71 (11) : 1581 - 1586
  • [8] Harnessing evolutionary programming for impedance spectroscopy analysis: A case study of mixed ionic-electronic conductors
    Hershkovitz, Shany
    Baltianski, Sioma
    Tsur, Yoed
    SOLID STATE IONICS, 2011, 188 (01) : 104 - 109
  • [9] RECENT INVESTIGATIONS INTO THE PROPERTIES OF MIXED IONIC ELECTRONIC CONDUCTORS
    RIESS, I
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1992, 12 (04): : 351 - 356
  • [10] Non Linear Modeling of Mixed Ionic Electronic Conductors
    Ciucci, F.
    Goodwin, D. G.
    SOLID OXIDE FUEL CELLS 10 (SOFC-X), PTS 1 AND 2, 2007, 7 (01): : 2075 - 2082