DmADs-Net: dense multiscale attention and depth-supervised network for medical image segmentation

被引:0
|
作者
Fu, Zhaojin [1 ]
Li, Jinjiang [1 ]
Chen, Zheng [1 ]
Ren, Lu [1 ]
机构
[1] Shandong Technol & Business Univ, Sch Comp Sci & Technol, Yantai 264005, Peoples R China
基金
中国国家自然科学基金;
关键词
Medical image segmentation; Attention mechanism; Deep supervision; Multiscale convolution; ARCHITECTURE;
D O I
10.1007/s13042-024-02248-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning has made important contributions to the development of medical image segmentation. Convolutional neural networks, as a crucial branch, have attracted strong attention from researchers. Through the tireless efforts of numerous researchers, convolutional neural networks have yielded numerous outstanding algorithms for processing medical images. The ideas and architectures of these algorithms have also provided important inspiration for the development of later technologies.Through extensive experimentation, we have found that currently mainstream deep learning algorithms are not always able to achieve ideal results when processing complex datasets and different types of datasets. These networks still have room for improvement in lesion localization and feature extraction. Therefore, we have created the dense multiscale attention and depth-supervised network (DmADs-Net).We use ResNet for feature extraction at different depths and create a Multi-scale Convolutional Feature Attention Block to improve the network's attention to weak feature information. The Local Feature Attention Block is created to enable enhanced local feature attention for high-level semantic information. In addition, in the feature fusion phase, a Feature Refinement and Fusion Block is created to enhance the fusion of different semantic information.We validated the performance of the network using five datasets of varying sizes and types. Results from comparative experiments show that DmADs-Net outperformed mainstream networks. Ablation experiments further demonstrated the effectiveness of the created modules and the rationality of the network architecture.
引用
收藏
页码:523 / 548
页数:26
相关论文
共 50 条
  • [1] MSA-Net: Multiscale spatial attention network for medical image segmentation
    Fu, Zhaojin
    Li, Jinjiang
    Hua, Zhen
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 70 : 453 - 473
  • [2] MGU-Net: a multiscale gate attention encoder-decoder network for medical image segmentation
    Liu, Le
    Chen, Qi
    Su, Jian
    Du, Xiao Gang
    Lei, Tao
    Wan, Yong
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2023, 71 (04) : 275 - 285
  • [3] Dense Dilated Deep Multiscale Supervised U-Network for biomedical image segmentation
    Bose, Shirsha
    Chowdhury, Ritesh Sur
    Das, Rangan
    Maulik, Ujjwal
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 143
  • [4] Multiscale transunet +  + : dense hybrid U-Net with transformer for medical image segmentation
    Bo Wang
    ·Fan Wang
    Pengwei Dong
    ·Chongyi Li
    Signal, Image and Video Processing, 2022, 16 : 1607 - 1614
  • [5] MFDS-Net: Multiscale Feature Depth-Supervised Network for Remote Sensing Change Detection With Global Semantic and Detail Information
    Huang, Zhenyang
    Fu, Zhaojin
    Song, Jintao
    Yuan, Genji
    Li, Jinjiang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [6] Multiscale Dense Attention Network for Retinal Vessel Segmentation
    Liang Liming
    Yu Jie
    Zhou Longsong
    Chen Xin
    Wu Jian
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (06)
  • [7] TA-Net: Triple attention network for medical image segmentation
    Li, Yang
    Yang, Jun
    Ni, Jiajia
    Elazab, Ahmed
    Wu, Jianhuang
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 137
  • [8] PS5-Net: a medical image segmentation network with multiscale resolution
    Li, Fuchen
    Liu, Yong
    Qi, Jianbo
    Du, Yansong
    Wang, Qingyue
    Ma, Wenbo
    Xu, Xianchong
    Zhang, Zhongqi
    JOURNAL OF MEDICAL IMAGING, 2024, 11 (01)
  • [9] MDE-Net: Multi-Layer Depth Extraction Network With Attention Mechanism for Medical Image Segmentation
    Ding, Xiaokang
    Dong, Ling
    Ji, Yingyu
    Qian, Ke'Er
    IEEE ACCESS, 2024, 12 : 177647 - 177662
  • [10] AEC-Net: Attention and Edge Constraint Network for Medical Image Segmentation
    Wang, Jingyi
    Zhao, Xu
    Ning, Qingtian
    Qian, Dahong
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 1616 - 1619