Machine Learning-Powered Mitigation Policy Optimization in Epidemiological Models

被引:0
|
作者
Thiagarajan, Jayaraman J. [1 ]
Anirudh, Rushil [1 ]
Bremer, Peer-Timo [1 ]
Germann, Timothy [2 ]
Del Valle, Sara [2 ]
Streitz, Frederick [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Los Alamos Natl Lab, Los Alamos, NM USA
关键词
INFLUENZA;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A crucial aspect of managing a public health crisis is to effectively balance prevention and mitigation strategies, while taking their socio-economic impact into account. In particular, determining the influence of different non-pharmaceutical interventions (NPIs) on the effective use of public resources is an important problem, given the uncertainties on when a vaccine will be made available. In this paper, we propose a new approach for obtaining optimal policy recommendations based on epidemiological models, which can characterize the disease progression under different interventions, and a look-ahead reward optimization strategy to choose the suitable NPI at different stages of an epidemic. Given the time delay inherent in any epidemiological model and the exponential nature especially of an unmanaged epidemic, we find that such a look-ahead strategy infers non-trivial policies that adhere well to the constraints specified. Using two different epidemiological models, namely SEIR and EpiCast, we evaluate the proposed algorithm to determine the optimal NPI policy, under a constraint on the number of daily new cases and the primary reward being the absence of restrictions.
引用
收藏
页码:63 / 72
页数:10
相关论文
共 50 条
  • [1] Machine Learning-Powered Optimization of a CHO Cell Cultivation Process
    Richter, Jannik
    Wang, Qimin
    Lange, Ferdinand
    Thiel, Phil
    Yilmaz, Nina
    Solle, Doerte
    Zhuang, Xiaoying
    Beutel, Sascha
    BIOTECHNOLOGY AND BIOENGINEERING, 2025,
  • [2] Machine Learning-Powered Combinatorial Clock Auction
    Soumalias, Ermis Nikiforos
    Weissteiner, Jakob
    Heiss, Jakob
    Seuken, Sven
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 9, 2024, : 9891 - 9900
  • [3] Development of machine learning-powered models for prostate cancer HRD prediction.
    Nercessian, Michael
    Conway, Jake
    Pelekanou, Vasiliki
    Schlicker, Andreas
    Nevedomskaya, Ekaterina
    Fahy, Darren
    Varao, Julia
    Pyle, Michael
    Drage, Michael
    Khosla, Archit
    Glass, Benjamin
    DiTomaso, Emmanuelle
    Zhou, Yinghui
    JOURNAL OF CLINICAL ONCOLOGY, 2023, 41
  • [4] Machine learning-powered antibiotics phenotypic drug discovery
    Zoffmann, Sannah
    Vercruysse, Maarten
    Benmansour, Fethallah
    Maunz, Andreas
    Wolf, Luise
    Marti, Rita Blum
    Heckel, Tobias
    Ding, Haiyuan
    Truong, Hoa Hue
    Prummer, Michael
    Schmucki, Roland
    Mason, Clive S.
    Bradley, Kenneth
    Jacob, Asha Ivy
    Lerner, Christian
    del Rosario, Andrea Araujo
    Burcin, Mark
    Amrein, Kurt E.
    Prunotto, Marco
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [5] Machine learning-powered antibiotics phenotypic drug discovery
    Sannah Zoffmann
    Maarten Vercruysse
    Fethallah Benmansour
    Andreas Maunz
    Luise Wolf
    Rita Blum Marti
    Tobias Heckel
    Haiyuan Ding
    Hoa Hue Truong
    Michael Prummer
    Roland Schmucki
    Clive S. Mason
    Kenneth Bradley
    Asha Ivy Jacob
    Christian Lerner
    Andrea Araujo del Rosario
    Mark Burcin
    Kurt E. Amrein
    Marco Prunotto
    Scientific Reports, 9
  • [6] A Generalized Workflow for Creating Machine Learning-Powered Compact Models for Multi-State Devices
    Hutchins, Jack
    Alam, Shamiul
    Zeumault, Andre
    Beckmann, Karsten
    Cady, Nathaniel
    Rose, Garrett S.
    Aziz, Ahmedullah
    IEEE ACCESS, 2022, 10 : 115513 - 115519
  • [7] Machine learning-powered traffic processing in commodity hardware with eBPF
    Gallego-Madrid, Jorge
    Bru-Santa, Irene
    Ruiz-Rodenas, Alvaro
    Sanchez-Iborra, Ramon
    Skarmeta, Antonio
    COMPUTER NETWORKS, 2024, 243
  • [8] Machine Learning-Powered UAV Imaging for Landslide Crack Identification
    Xiang, Zilin
    Dou, Jie
    Luo, Wanqi
    Guo, Yanhao
    ENGINEERING GEOLOGY FOR A HABITABLE EARTH, VOL 3, IAEG XIV CONGRESS 2023, 2024, : 593 - 601
  • [9] Advancing understanding of microbial biofilms through machine learning-powered studies
    Ting Liu
    Yuting Zhai
    Kwangcheol Casey Jeong
    Food Science and Biotechnology, 2023, 32 : 1653 - 1664
  • [10] Machine learning-powered wearable interface for distinguishable and predictable sweat sensing
    Zhou, Zhongzeng
    He, Xuecheng
    Xiao, Jingyu
    Pan, Jiuxiang
    Li, Mengmeng
    Xu, Tailin
    Zhang, Xueji
    BIOSENSORS & BIOELECTRONICS, 2024, 265