Fungal removal of cyanotoxins in constructed wetlands: The forgotten degraders

被引:1
|
作者
Alvarez, Angela Gonzalez [1 ]
Quer, Alba Martinez i [1 ]
Ellegaard-Jensen, Lea [1 ,2 ]
Sapkota, Rumakanta [1 ]
Carvalho, Pedro N. [1 ,2 ]
Johansen, Anders [1 ,2 ]
机构
[1] Aarhus Univ, Dept Environm Sci, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
[2] Aarhus Univ, Ctr Water Technol, WATEC, Ny Munkegade 120, DK-8000 Aarhus, Denmark
关键词
Nature -based solutions; Microcystin-LR; Cylindrospermopsin; Biodegradation; Arbuscular mycorrhizal fungi; ARBUSCULAR MYCORRHIZAL FUNGI; CLADOSPORIUM-CLADOSPORIOIDES; MICROCYSTIS-AERUGINOSA; BACTERIAL-DEGRADATION; DIVERSITY; PHYTOREMEDIATION; PRIMERS; TOXINS; GROWTH; ROOTS;
D O I
10.1016/j.scitotenv.2024.172590
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Harmful cyanobacterial blooms have increased globally, releasing hazardous cyanotoxins that threaten the safety of water resources. Constructed wetlands (CWs) are a nature-based and low-cost solution to purify and remove cyanotoxins from water. However, bio-mechanistic understanding of the biotransformation processes expected to drive cyanotoxin removal in such systems is poor, and primarily focused on bacteria. Thus, the present study aimed at exploring the fungal contribution to microcystin-LR and cylindrospermopsin biodegradation in CWs. Based on CW mesocosms, two experimental approaches were taken: a) amplicon sequencing studies were conducted to investigate the involvement of the fungal community; and b) CW fungal isolates were tested for their microcystin-LR and cylindrospermopsin degradation capabilities. The data uncovered effects of seasonality (spring or summer), cyanotoxin exposure, vegetation (unplanted, Juncus effusus or Phragmites australis) and substratum (sand or gravel) on the fungal community structure. Additionally, the arbuscular mycorrhizal fungus Rhizophagus and the endophyte Myrmecridium showed positive correlations with cyanotoxin removal. Fungal isolates revealed microcystin-LR-removal potentials of approximately 25 % in in vitro biodegradation experiments, while the extracellular chemical fingerprint of the cultures suggested a potential intracellular
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Nitrogen removal processes in constructed wetlands
    Tanner, CC
    WETLANDS ECOSYSTEMS IN ASIA: FUNCTION AND MANAGEMENT, 2004, 1 : 331 - 346
  • [2] Removal of organochlorine pesticides in constructed wetlands
    Li, Hong
    Zeng, Hong-Hu
    Liang, Yan-Peng
    Zeng, Hong-Hu
    Liang, Yan-Peng
    Applied Mechanics and Materials, 2014, 692 : 40 - 43
  • [3] Removal of metals and ammonia in constructed wetlands
    Crites, RW
    Dombeck, GD
    Watson, RC
    Williams, CR
    WATER ENVIRONMENT RESEARCH, 1997, 69 (02) : 132 - 135
  • [4] Phosphorus removal in different constructed wetlands
    Lüderitz, V
    Gerlach, F
    ACTA BIOTECHNOLOGICA, 2002, 22 (1-2): : 91 - 99
  • [5] Atenolol removal in microcosm constructed wetlands
    Dordio, Ana
    Pinto, Jose
    Dias, Cristina Barrocas
    Pinto, Ana Paula
    Palace Carvalho, Alfredo J.
    Teixeira, Dora Martins
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL ANALYTICAL CHEMISTRY, 2009, 89 (8-12) : 835 - 848
  • [6] DESIGNING CONSTRUCTED WETLANDS FOR NITROGEN REMOVAL
    HAMMER, DA
    KNIGHT, RL
    WATER SCIENCE AND TECHNOLOGY, 1994, 29 (04) : 15 - 27
  • [7] Constructed wetlands for boron removal: A review
    Turker, Onur Can
    Vymazal, Jan
    Ture, Cengiz
    ECOLOGICAL ENGINEERING, 2014, 64 : 350 - 359
  • [8] Chromium removal in constructed wetlands: A review
    Sultana, Mar-Yam
    Akratos, Christos S.
    Pavlou, Stavros
    Vayenas, Dimitrios V.
    INTERNATIONAL BIODETERIORATION & BIODEGRADATION, 2014, 96 : 181 - 190
  • [9] Removal processes for arsenic in constructed wetlands
    Lizama, Katherine A.
    Fletcher, Tim D.
    Sun, Guangzhi
    CHEMOSPHERE, 2011, 84 (08) : 1032 - 1043
  • [10] Constructed wetlands as an alternative for arsenic removal
    Corroto, C. E.
    Iriel, A.
    Calderon, E.
    Fernadez-Cirelli, A.
    Perez Carrera, A. L.
    ENVIRONMENTAL ARSENIC IN A CHANGING WORLD (AS2018), 2018, : 493 - 495