Local Resonance Prediction Based on Physics-Informed Machine Learning in Piezoelectric Metamaterials

被引:0
|
作者
Wang, Ting [1 ]
Zhou, Qianyu [1 ]
Tang, Jiong [1 ]
机构
[1] Univ Connecticut, Sch Mech Aerosp & Mfg Engn, Storrs, CT 06269 USA
关键词
local resonance; machine learning; piezoelectric metamaterials; wave attenuation; BEAMS;
D O I
10.1117/12.3011030
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Under ideal assumptions of infinite lattices where the infinite wave attenuation intensity is achievable, the bandgap estimation considers the bandgap bounds to achieve broadened band width. However, for practical applications in which finite or limited numbers of unit cells are allowed, the induced bandgap region actually includes frequencies with poor wave attenuation intensity. Therefore, for realizing true wave attenuation applications at targeted operating frequencies, it is of critical importance to locate the operating frequency not only within the bandgap region but also at which the wave attenuation intensity is strongest. To address this issue, we explore a tool for estimating the operating frequency with strong wave attenuation intensity from local resonances of scattering unit cells. Since the implicit correlation between the local resonance and the frequency location of strong wave attenuation intensity is determined by multiple parameters and cannot be analytically expressed by the complicated modeling, we suggest a physics-informed machine leaning approach. By introducing analytical modeling physics into the machine learning models, both the operating frequency and the corresponding achievable strongest wave attenuation intensity can be predicted, which could provide insight into the future design and optimization in the piezoelectrical local resonance metamaterials field.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Physics-Informed Machine Learning for Inverse Design of Optical Metamaterials
    Sarkar, Sulagna
    Ji, Anqi
    Jermain, Zachary
    Lipton, Robert
    Brongersma, Mark
    Dayal, Kaushik
    Noh, Hae Young
    ADVANCED PHOTONICS RESEARCH, 2023, 4 (12):
  • [2] Milling Surface Roughness Prediction Based on Physics-Informed Machine Learning
    Zeng, Shi
    Pi, Dechang
    SENSORS, 2023, 23 (10)
  • [3] Physics-informed machine learning
    George Em Karniadakis
    Ioannis G. Kevrekidis
    Lu Lu
    Paris Perdikaris
    Sifan Wang
    Liu Yang
    Nature Reviews Physics, 2021, 3 : 422 - 440
  • [4] Physics-informed machine learning
    Karniadakis, George Em
    Kevrekidis, Ioannis G.
    Lu, Lu
    Perdikaris, Paris
    Wang, Sifan
    Yang, Liu
    NATURE REVIEWS PHYSICS, 2021, 3 (06) : 422 - 440
  • [5] Physics-informed machine learning models for ship speed prediction
    Lang, Xiao
    Wu, Da
    Mao, Wengang
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [6] Physics-informed machine learning for enhanced prediction of condensation heat transfer
    Lee, Haeun
    Lee, Cheonkyu
    Lee, Hyoungsoon
    ENERGY AND AI, 2025, 20
  • [7] Separable physics-informed DeepONet: Breaking the curse of dimensionality in physics-informed machine learning
    Mandl, Luis
    Goswami, Somdatta
    Lambers, Lena
    Ricken, Tim
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 434
  • [8] A Taxonomic Survey of Physics-Informed Machine Learning
    Pateras, Joseph
    Rana, Pratip
    Ghosh, Preetam
    APPLIED SCIENCES-BASEL, 2023, 13 (12):
  • [9] Residual strength prediction of corroded pipelines based on physics-informed machine learning and domain generalization
    Wu, Tingting
    Miao, Xingyuan
    Song, Fulin
    NPJ MATERIALS DEGRADATION, 2025, 9 (01)
  • [10] Numerical analysis of physics-informed neural networks and related models in physics-informed machine learning
    De Ryck, Tim
    Mishra, Siddhartha
    ACTA NUMERICA, 2024, 33 : 633 - 713