Prediction models and multi-objective optimization of the single deposited tracks in laser direct metal deposition of 316L stainless steel

被引:0
|
作者
Tat, Khoa Doan [1 ]
Le, Van Thao [2 ]
Van, Nguy Duong [1 ]
机构
[1] Le Quy Don Tech Univ, Fac Mech Engn, Hanoi, Vietnam
[2] Le Quy Don Tech Univ, Adv Technol Ctr, Hanoi, Vietnam
来源
MANUFACTURING REVIEW | 2024年 / 11卷
关键词
Laser direct metal deposition; 316L; optimization; GRA; TOPSIS; PSO; ENERGY DEPOSITION; MULTI-TRACK; POWDER;
D O I
10.1051/mfreview/2024012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Laser direct metal deposition (LDMD) is a metal additive manufacturing process, which uses a laser source to melt metal powder and deposit the molten metal into the part layer-by-layer through a nozzle. With suitable process parameters and setting conditions, a component can be fabricated with a full density. In this process, the shape of single tracks is a key indicator, which directly prescribes the quality of the process and the fabricated component. To fabricate a complex component, especially that with thin-wall structures with free of defects, controlling the single tracks' geometry and the understanding on the effects of the process parameters are essential. Therefore, this article focuses on studying the effects of process variables on single tracks' attributes in the LDMD process of SS316L and identifying the optimum variables for the deposition of SS316L thin wall structures. The observed results indicated that, among the process parameters (the scanning speed Vs, the laser power Pl, and the powder feed rate fp), Pl exhibits the highest impact contribution to the models of the deposited track width w and the deposited track penetration p with a contribution of 71.83% and 87.68%, respectively. Vs exhibits the highest contribution to the models of the deposited track height h a contribution of 49.86%. On the other hand, fp shows an insignificant impact contribution to the w and p models. All the developed models feature a high prediction accuracy with the values of determination coefficients R2 of 97.89%, 97.08%, 99.11% for w, h, and p, respectively, indicating that they can be used to prediction w, h, and p with high confidence and precision levels. Moreover, the optimization results achieved by different methods (i.e., GRA, TOPSIS, and PSO+TOPSIS) demonstrated that the PSO and TOPSIS combination can be used to find out the most optimal process parameters (i.e., Vs = 6 mm/s, Pl = 263.63 W, and fp = 18 g/min) to build thin-walled structures in SS316L by LDMD.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Direct laser deposition of 316L stainless steel
    Majumdar, JD
    Manna, I
    Li, L
    TRENDS IN MATERIALS AND MANUFACTURING TECHNOLOGIES FOR TRANSPORTATION INDUSTRIES AND POWDER METALLURGY RESEARCH AND DEVELOPMENT IN THE TRANSPORTATION INDUSTRY, 2005, : 41 - 44
  • [2] Investigation of laser direct deposited 316L stainless steel
    Zhang Yongzhong
    Gao Shiyou
    Xi Mingzhe
    Shi Likai
    JOURNAL OF ADVANCED MATERIALS, 2007, 39 (04): : 34 - 38
  • [3] Evaluation of hydrogen embrittlement susceptibility of underwater laser direct metal deposited 316L stainless steel
    Wang, Zhandong
    Jia, Zhiyuan
    Wu, Erke
    Chen, Mingzhi
    Sun, Guifang
    Han, En-Hou
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 82 : 858 - 871
  • [4] Microstructure of 316L stainless steel components produced by direct laser deposition
    Sklyar M.O.
    Turichin G.A.
    Klimova O.G.
    Zotov O.G.
    Topalov I.K.
    Steel in Translation, 2016, 46 (12) : 883 - 887
  • [5] Directional Crystallization of 316L Stainless Steel Specimens by Direct Laser Deposition
    Gorunov, A., I
    INORGANIC MATERIALS, 2019, 55 (15) : 1439 - 1444
  • [6] Directional Crystallization of 316L Stainless Steel Specimens by Direct Laser Deposition
    A. I. Gorunov
    Inorganic Materials, 2019, 55 : 1439 - 1444
  • [7] Using a Trial Sample on Stainless Steel 316L in a Direct Laser Deposition Process
    Vildanov, Artur
    Babkin, Konstantin
    Mendagaliyev, Ruslan
    Arkhipov, Andrey
    Turichin, Gleb
    METALS, 2021, 11 (10)
  • [8] A new laser remelting strategy for direct energy deposition of 316L stainless steel
    Nie, Hailin
    Liu, Hang
    Wang, Chao
    Wu, Yuru
    Zhu, Shimin
    Luo, Jun
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2024, 238 (14) : 2139 - 2151
  • [9] MICROSTRUCTURAL AND THERMAL STABILITY OF SELECTIVE LASER MELTED 316L STAINLESS STEEL SINGLE TRACKS
    Krakhmalev, P.
    Yadroitsava, I.
    Fredriksson, G.
    Yadroitsev, I.
    SOUTH AFRICAN JOURNAL OF INDUSTRIAL ENGINEERING, 2017, 28 (01): : 12 - 19
  • [10] MULTI-OBJECTIVE OPTIMIZATION OF ROUNDNESS AND POSITIONAL ERRORS IN CO2 LASER CUTTING OF HOLES IN AISI 316L STAINLESS STEEL
    Madić, Miloš
    Mladenović, Srđan
    UPB Scientific Bulletin, Series D: Mechanical Engineering, 2024, 86 (01): : 163 - 174