Ensemble and Transformer Encoder-based Models for the Cervical Cancer Classification Using Pap-smear Images

被引:0
|
作者
Alzahrani, Maysoon [1 ]
Khan, Usman Ali [1 ]
Al-Garni, Sultan [1 ]
机构
[1] King Abdulaziz Univ, Dept Informat Syst, Fac Comp & Informat Technol, Jeddah, Saudi Arabia
关键词
Cervical cancer; Pap; -smear; hybrid CAD system; ensemble learning; transformer; SKIN-CANCER;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Cervical cancer poses a health concern for women globally ranking as the seventh most common disease and the fourth most frequent cancer among women. The classification of cytopathology images is utilized in diagnosing this condition with a focus on automating the process due to potential human errors in manual examinations. This study presents an approach that integrates transfer learning, ensemble learning and a transformer encoder to classify cervical cancer using pap-smear images from the SIPaKMeD dataset. By combining these methods human involvement in the classification task is minimized. Initially individual models based on transfer learning are. Their unique characteristics are combined to create an ensemble model. This ensemble model is then input into the proposed transformer encoder specifically utilizing the Vision Transformer (ViT) model. The results highlight the effectiveness of this methodology. The VGG16 model demonstrates accuracy of 97.04% and an F1 score of 97.06% when applied to classifying five categories using the SIPaKMeD dataset. However surpassing this performance is the learning model, with an accuracy of 97.37%. Notably outperforming all models is the transformer encoder model achieving an accuracy of 97.54%.Through the utilization of transfer learning, ensemble learning and the transformer encoder model this research introduces a method, for automating the classification of cervical cancer. The findings underscore the capability of the suggested approach to enhance the precision and effectiveness of diagnosing cancer.
引用
收藏
页码:1637 / 1646
页数:10
相关论文
共 50 条
  • [1] A pap-smear analysis tool (PAT) for detection of cervical cancer from pap-smear images
    Wasswa William
    Andrew Ware
    Annabella Habinka Basaza-Ejiri
    Johnes Obungoloch
    BioMedical Engineering OnLine, 18
  • [2] Automated Diagnosis and Classification of Cervical Cancer from pap-smear Images
    William, Wasswa
    Ware, Andrew
    Basaza-Ejiri, Annabella Habinka
    Obungoloch, Johnes
    2019 IST-AFRICA WEEK CONFERENCE (IST-AFRICA), 2019,
  • [3] A pap-smear analysis tool (PAT) for detection of cervical cancer from pap-smear images
    William, Wasswa
    Ware, Andrew
    Basaza-Ejiri, Annabella Habinka
    Obungoloch, Johnes
    BIOMEDICAL ENGINEERING ONLINE, 2019, 18 (1)
  • [4] Classification of Cervical-Cancer Using Pap-Smear Images: A Convolutional Neural Network Approach
    Taha, Bilal
    Dias, Jorge
    Werghi, Naoufel
    MEDICAL IMAGE UNDERSTANDING AND ANALYSIS (MIUA 2017), 2017, 723 : 261 - 272
  • [5] Exemplar pyramid deep feature extraction based cervical cancer image classification model using pap-smear images
    Yaman, Orhan
    Tuncer, Turker
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 73
  • [6] Bi-path Architecture of CNN Segmentation and Classification Method for Cervical Cancer Disorders Based on Pap-smear Images
    Desiani, Anita
    Erwin, Member
    Suprihatin, Bambang
    Yahdin, Sugandi
    Putri, Ajeng I.
    Husein, Fathur R.
    IAENG International Journal of Computer Science, 2021, 48 (03) : 1 - 9
  • [7] A stack autoencoders based deep neural network approach for cervical cell classification in pap-smear images
    Singh S.K.
    Goyal A.
    Recent Advances in Computer Science and Communications, 2021, 14 (01) : 62 - 70
  • [8] CervixFormer: A Multi-scale swin transformer-Based cervical pap-Smear WSI classification framework
    Khan, Anwar
    Han, Seunghyeon
    Ilyas, Naveed
    Lee, Yong-Moon
    Lee, Boreom
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 240
  • [9] Cervical Cancer Classification From Pap Smear Images Using Deep Convolutional Neural Network Models
    Tan, Sher Lyn
    Selvachandran, Ganeshsree
    Ding, Weiping
    Paramesran, Raveendran
    Kotecha, Ketan
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2024, 16 (01) : 16 - 38
  • [10] Cervical Cancer Classification From Pap Smear Images Using Deep Convolutional Neural Network Models
    Sher Lyn Tan
    Ganeshsree Selvachandran
    Weiping Ding
    Raveendran Paramesran
    Ketan Kotecha
    Interdisciplinary Sciences: Computational Life Sciences, 2024, 16 : 16 - 38