A diffusion model multi-scale feature fusion network for imbalanced medical image classification research

被引:1
|
作者
Zhu, Zipiao [1 ]
Liu, Yang [2 ]
Yuan, Chang-An [3 ]
Qin, Xiao [4 ]
Yang, Feng [1 ,5 ]
机构
[1] Guangxi Univ, Sch Comp Elect & Informat, Nanning 530004, Guangxi, Peoples R China
[2] Univ Oulu, Ctr Machine Vis & Signal Anal, FI-90014 Oulu, Finland
[3] Guangxi Acad Sci, Big Data & Intelligent Comp Res Ctr, Nanning 530007, Peoples R China
[4] Nanning Normal Univ, Sch Comp & Informat Engn, Nanning 530299, Peoples R China
[5] Guangxi Univ, Guangxi Key Lab Multimedia Commun Network Technol, Nanning 530004, Guangxi, Peoples R China
关键词
Images classification; Diffusion model; Feature fusion; Imbalance class; Attention mechanism;
D O I
10.1016/j.cmpb.2024.108384
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background and objective: Medicine image classification are important methods of traditional medical image analysis, but the trainable data in medical image classification is highly imbalanced and the accuracy of medical image classification models is low. In view of the above two common problems in medical image classification. This study aims to: (i) effectively solve the problem of poor training effect caused by the imbalance of class imbalanced data sets. (ii) propose a network framework suitable for improving medical image classification results, which needs to be superior to existing methods. Methods: In this paper, we put in the diffusion model multi-scale feature fusion network (DMSFF), which mainly uses the diffusion generation model to overcome imbalanced classes (DMOIC) on highly imbalanced medical image datasets. At the same time, it is processed according to the cropped image augmentation strategy through cropping (IASTC). Based on this, we use the new dataset to design a multi-scale feature fusion network (MSFF) that can fully utilize multiple hierarchical features. The DMSFF network can effectively solve the problems of small and imbalanced samples and low accuracy in medical image classification. Results: We evaluated the performance of the DMSFF network on highly imbalanced medical image classification datasets APTOS2019 and ISIC2018. Compared with other classification models, our proposed DMSFF network achieved significant improvements in classification accuracy and F1 score on two datasets, reaching 0.872, 0.731, and 0.906, 0.836, respectively. Conclusions: Our newly proposed DMSFF architecture outperforms existing methods on two datasets, and verifies the effectiveness of generative model inverse balance for imbalance class datasets and feature enhancement by multi-scale feature fusion. Further, the method can be applied to other class imbalanced data sets where the results will be improved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] HiFuse: Hierarchical multi-scale feature fusion network for medical image classification
    Huo, Xiangzuo
    Sun, Gang
    Tian, Shengwei
    Wang, Yan
    Yu, Long
    Long, Jun
    Zhang, Wendong
    Li, Aolun
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 87
  • [2] Research on Multi-Scale Feature Fusion Network Algorithm Based on Brain Tumor Medical Image Classification
    Zhou, Yuting
    Yang, Xuemei
    Yin, Junping
    Liu, Shiqi
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (03): : 5313 - 5333
  • [3] Multi-scale feature pyramid fusion network for medical image segmentation
    Zhang, Bing
    Wang, Yang
    Ding, Caifu
    Deng, Ziqing
    Li, Linwei
    Qin, Zesheng
    Ding, Zhao
    Bian, Lifeng
    Yang, Chen
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2023, 18 (02) : 353 - 365
  • [4] Multi-scale feature pyramid fusion network for medical image segmentation
    Bing Zhang
    Yang Wang
    Caifu Ding
    Ziqing Deng
    Linwei Li
    Zesheng Qin
    Zhao Ding
    Lifeng Bian
    Chen Yang
    International Journal of Computer Assisted Radiology and Surgery, 2023, 18 : 353 - 365
  • [5] Hyperspectral Image Classification Based on Multi-Scale Feature Fusion Residual Network
    Deng Ziqing
    Wang Yang
    Zhang Bing
    Ding Zhao
    Bian Lifeng
    Yang Chen
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (18)
  • [6] Multi-Scale Feature Based Medical Image Classification
    Li, Bo
    Li, Wei
    Zhao, Dazhe
    2013 3RD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT), 2013, : 1182 - 1186
  • [7] Enhancing Medical Image Classification With Context Modulated Attention and Multi-Scale Feature Fusion
    Zhang, Renhan
    Luo, Xuegang
    Lv, Junrui
    Cao, Junyang
    Zhu, Yangping
    Wang, Juan
    Zheng, Bochuan
    IEEE ACCESS, 2025, 13 : 15226 - 15243
  • [8] Multi-scale high and low feature fusion attention network for intestinal image classification
    Li, Sheng
    Zhu, Beibei
    Guo, Xinran
    Ye, Shufang
    Ye, Jietong
    Zhuang, Yongwei
    He, Xiongxiong
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (06) : 2877 - 2886
  • [9] MSFF: A Multi-Scale Feature Fusion Convolutional Neural Network for Hyperspectral Image Classification
    Gong, Gu
    Wang, Xiaopeng
    Zhang, Jiahua
    Shang, Xiaodi
    Pan, Zhicheng
    Li, Zhiyuan
    Zhang, Junshi
    ELECTRONICS, 2025, 14 (04):
  • [10] Multi-scale high and low feature fusion attention network for intestinal image classification
    Sheng Li
    Beibei Zhu
    Xinran Guo
    Shufang Ye
    Jietong Ye
    Yongwei Zhuang
    Xiongxiong He
    Signal, Image and Video Processing, 2023, 17 : 2877 - 2886