Screening and diagnosis of cardiovascular disease using artificial intelligence-enabled cardiac magnetic resonance imaging

被引:24
|
作者
Wang, Yan-Ran [1 ]
Yang, Kai [2 ,3 ]
Wen, Yi [4 ]
Wang, Pengcheng [5 ]
Hu, Yuepeng [6 ]
Lai, Yongfan [7 ]
Wang, Yufeng [8 ]
Zhao, Kankan [9 ]
Tang, Siyi [1 ,10 ]
Zhang, Angela [1 ,11 ]
Zhan, Huayi [4 ]
Lu, Minjie [2 ,3 ]
Chen, Xiuyu [2 ,3 ]
Yang, Shujuan [2 ,3 ]
Dong, Zhixiang [2 ,3 ]
Wang, Yining [12 ]
Liu, Hui [13 ]
Zhao, Lei [14 ]
Huang, Lu [15 ]
Li, Yunling [16 ]
Wu, Lianming [17 ]
Chen, Zixian [18 ]
Luo, Yi [19 ]
Liu, Dongbo [4 ]
Zhao, Pengbo [20 ]
Lin, Keldon [21 ]
Wu, Joseph C. [1 ,11 ]
Zhao, Shihua [2 ,3 ]
机构
[1] Stanford Univ, Sch Med, Stanford, CA 94305 USA
[2] Chinese Acad Med Sci & Peking Union Med Coll, Fuwai Hosp, Dept Magnet Resonance Imaging, Beijing, Peoples R China
[3] Chinese Acad Med Sci & Peking Union Med Coll, Natl Ctr Cardiovasc Dis, Beijing, Peoples R China
[4] Sichuan Changhong Elect Holding Grp, Changhong Res CHAIR, Mianyang, Sichuan, Peoples R China
[5] Univ Southern Calif, Dept Biomed Engn, Los Angeles, CA USA
[6] Duke Univ, Dept Elect & Comp Engn, Durham, NC USA
[7] Univ Sci & Technol China, Sch Engn, Hefei, Peoples R China
[8] SUNY Stony Brook, Dept Comp Sci, New York, NY USA
[9] Chinese Acad Sci, Shenzhen Inst Adv Technol, Paul C Lauterbur Res Ctr Biomed Imaging, Shenzhen, Peoples R China
[10] Stanford Univ, Dept Elect Engn, Stanford, CA USA
[11] Stanford Univ, Stanford Cardiovasc Inst, Sch Med, Div Cardiol, Stanford, CA USA
[12] Peking Union Med Coll Hosp, Beijing, Peoples R China
[13] Guangdong Prov Peoples Hosp, Guangzhou, Guangdong, Peoples R China
[14] Beijing Anzhen Hosp, Beijing, Peoples R China
[15] Tongji Hosp, Wuhan, Peoples R China
[16] Harbin Med Univ, Affiliated Hosp 2, Harbin, Peoples R China
[17] Renji Hosp, Shanghai, Peoples R China
[18] Lanzhou Univ, Hosp 1, Lanzhou, Peoples R China
[19] Univ Sci & Technol China, Div Life Sci & Med, USTC, Affiliated Hosp 1, Hefei, Peoples R China
[20] Northwestern Univ, Dept Elect & Comp Engn, Evanston, IL USA
[21] Mayo Clin, Alix Sch Med, Phoenix, AZ USA
基金
国家重点研发计划;
关键词
RIGHT HEART CATHETERIZATION; CARDIOLOGY WORKING GROUP; EUROPEAN-SOCIETY; PULMONARY-HYPERTENSION; POSITION STATEMENT; TASK-FORCE; CARDIOMYOPATHY; CLASSIFICATION; MYOCARDITIS; MANAGEMENT;
D O I
10.1038/s41591-024-02971-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cardiac magnetic resonance imaging (CMR) is the gold standard for cardiac function assessment and plays a crucial role in diagnosing cardiovascular disease (CVD). However, its widespread application has been limited by the heavy resource burden of CMR interpretation. Here, to address this challenge, we developed and validated computerized CMR interpretation for screening and diagnosis of 11 types of CVD in 9,719 patients. We propose a two-stage paradigm consisting of noninvasive cine-based CVD screening followed by cine and late gadolinium enhancement-based diagnosis. The screening and diagnostic models achieved high performance (area under the curve of 0.988 +/- 0.3% and 0.991 +/- 0.0%, respectively) in both internal and external datasets. Furthermore, the diagnostic model outperformed cardiologists in diagnosing pulmonary arterial hypertension, demonstrating the ability of artificial intelligence-enabled CMR to detect previously unidentified CMR features. This proof-of-concept study holds the potential to substantially advance the efficiency and scalability of CMR interpretation, thereby improving CVD screening and diagnosis.
引用
收藏
页码:1471 / +
页数:33
相关论文
共 50 条
  • [1] Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram
    Attia, Zachi I.
    Kapa, Suraj
    Lopez-Jimenez, Francisco
    McKie, Paul M.
    Ladewig, Dorothy J.
    Satam, Gaurav
    Pellikka, Patricia A.
    Enriquez-Sarano, Maurice
    Noseworthy, Peter A.
    Munger, Thomas M.
    Asirvatham, Samuel J.
    Scott, Christopher G.
    Carter, Rickey E.
    Friedman, Paul A.
    NATURE MEDICINE, 2019, 25 (01) : 70 - +
  • [2] ARTIFICIAL INTELLIGENCE-ENABLED AUTOMATED WHOLE PANCREAS FAT ESTIMATION ON MAGNETIC RESONANCE IMAGING
    Janssens, Laurens
    Nugen, Fred
    Korfiatis, Panagiotis
    Takahashi, Hiroaki
    Harper, Kelly
    Doering, Karen
    Erickson, Bradley
    Takahashi, Naoki
    Chandrasekhara, Vinay
    Vege, Santhi Swaroop
    Goenka, Ajit H.
    Majumder, Shounak
    GASTROENTEROLOGY, 2024, 166 (05) : S1048 - S1049
  • [3] CARDIOVASCULAR DISEASE DIAGNOSIS USING CARDIOVASCULAR IMAGING AND ARTIFICIAL INTELLIGENCE
    Miao, Julia
    Miao, Kathleen H.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2022, 79 (09) : 1343 - 1343
  • [4] Artificial Intelligence in Cardiovascular Magnetic Resonance Imaging
    Castellaccio, A.
    Arostegui, N. Almeida
    Jimenez, M. Palomo
    Tapia, D. Quinones
    Zurita, M. Bret
    Galvan, E. Vano
    RADIOLOGIA, 2025, 67 (02): : 239 - 247
  • [5] ARTIFICIAL INTELLIGENCE-ENABLED ECG ALGORITHM FOR THE SCREENING OF DIABETES
    Sharma, Abhinav
    Giannetti, Nadia
    Buckridge, David
    Ni, Jiayi
    Thao Huynh
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2020, 75 (11) : 3542 - 3542
  • [6] Adaptive Aquila Optimizer with Explainable Artificial Intelligence-Enabled Cancer Diagnosis on Medical Imaging
    Alkhalaf, Salem
    Alturise, Fahad
    Bahaddad, Adel Aboud
    Elnaim, Bushra M. Elamin
    Shabana, Samah
    Abdel-Khalek, Sayed
    Mansour, Romany F.
    CANCERS, 2023, 15 (05)
  • [7] The role of artificial intelligence in cardiovascular magnetic resonance imaging
    Aromiwura, Afolasayo A.
    Cavalcante, Joao L.
    Kwong, Raymond Y.
    Ghazipour, Aryan
    Amini, Amir
    Bax, Jeroen
    Raman, Subha
    Pontone, Gianluca
    Kalra, Dinesh K.
    PROGRESS IN CARDIOVASCULAR DISEASES, 2024, 86 : 13 - 25
  • [8] Explainable paroxysmal atrial fibrillation diagnosis using an artificial intelligence-enabled electrocardiogram
    Jin, Yeongbong
    Ko, Bonggyun
    Chang, Woojin
    Choi, Kang-Ho
    Lee, Ki Hong
    KOREAN JOURNAL OF INTERNAL MEDICINE, 2025,
  • [9] Development of an Artificial Intelligence-Enabled Electrocardiography to Detect 23 Cardiac Arrhythmias and Predict Cardiovascular Outcomes
    Wen-Yu Lin
    Chin Lin
    Wen-Cheng Liu
    Wei-Ting Liu
    Chiao-Hsiang Chang
    Hung-Yi Chen
    Chiao-Chin Lee
    Yu-Cheng Chen
    Chen-Shu Wu
    Chia-Cheng Lee
    Chih-Hung Wang
    Chun-Cheng Liao
    Chin-Sheng Lin
    Journal of Medical Systems, 49 (1)
  • [10] Cardiovascular Risk Assessment Using Artificial Intelligence-Enabled Event Adjudication and Hematologic Predictors
    Truslow, James G.
    Goto, Shinichi
    Homilius, Max
    Mow, Christopher
    Higgins, John M.
    MacRae, Calum A.
    Deo, Rahul C.
    CIRCULATION-CARDIOVASCULAR QUALITY AND OUTCOMES, 2022, 15 (06): : 377 - 390