Descriptors-based machine-learning prediction of cetane number using quantitative structure-property relationship
被引:3
|
作者:
Freitas, Rodolfo S. M.
论文数: 0引用数: 0
h-index: 0
机构:
Queen Mary Univ London, Sch Engn & Mat Sci, Mile End Rd, London E1 4NS, EnglandQueen Mary Univ London, Sch Engn & Mat Sci, Mile End Rd, London E1 4NS, England
Freitas, Rodolfo S. M.
[1
]
Jiang, Xi
论文数: 0引用数: 0
h-index: 0
机构:
Queen Mary Univ London, Sch Engn & Mat Sci, Mile End Rd, London E1 4NS, EnglandQueen Mary Univ London, Sch Engn & Mat Sci, Mile End Rd, London E1 4NS, England
Jiang, Xi
[1
]
机构:
[1] Queen Mary Univ London, Sch Engn & Mat Sci, Mile End Rd, London E1 4NS, England
The physicochemical properties of liquid alternative fuels are important but difficult to measure/predict, especially when complex surrogate fuels are concerned. In the present work, machine learning is used to develop quantitative structure-property relationship models. The fuel chemical structure is represented by molecular descriptors, allowing the linking of important features of the fuel composition and key properties of fuel utilization. Feature selection is employed to select the most relevant features that describe the chemical structure of the fuel and several machine learning algorithms are tested to construct interpretable models. The effectiveness of the methodology is demonstrated through the development of accurate and interpretable predictive models for cetane numbers, with a focus on understanding the link between molecular structure and fuel properties. In this context, matrix -based descriptors and descriptors related to the number of atoms in the molecule are directly linked with the cetane number of hydrocarbons. Furthermore, the results showed that molecular connectivity indices play a role in the cetane number for aromatic molecules. Also, the methodology is extended to predict the cetane number of ester and ether molecules, leveraging the design of alternative fuels towards fully sustainable fuel utilization.
机构:
IFP Energies Nouvelles, Direct Chim & Physicochim Appl, F-92852 Rueil Malmaison, FranceIFP Energies Nouvelles, Direct Chim & Physicochim Appl, F-92852 Rueil Malmaison, France
Creton, Benoit
Dartiguelongue, Cyril
论文数: 0引用数: 0
h-index: 0
机构:
IFP Energies Nouvelles, Direct Phys Anal, Rond Point Echangeur Solaize, F-69360 Solaize, FranceIFP Energies Nouvelles, Direct Chim & Physicochim Appl, F-92852 Rueil Malmaison, France
Dartiguelongue, Cyril
de Bruin, Theodorus
论文数: 0引用数: 0
h-index: 0
机构:
IFP Energies Nouvelles, Direct Chim & Physicochim Appl, F-92852 Rueil Malmaison, FranceIFP Energies Nouvelles, Direct Chim & Physicochim Appl, F-92852 Rueil Malmaison, France
de Bruin, Theodorus
Toulhoat, Herve
论文数: 0引用数: 0
h-index: 0
机构:
IFP Energies Nouvelles, Direct Sci, F-92852 Rueil Malmaison, FranceIFP Energies Nouvelles, Direct Chim & Physicochim Appl, F-92852 Rueil Malmaison, France
机构:
Mary Kay OConnor Proc Safety Ctr, College Stn, TX USA
Texas A&M Univ, Artie McFerrin Dept Chem Engn, College Stn, TX 77843 USAMary Kay OConnor Proc Safety Ctr, College Stn, TX USA
Chaudhari, Purvali
Ade, Nilesh
论文数: 0引用数: 0
h-index: 0
机构:
Mary Kay OConnor Proc Safety Ctr, College Stn, TX USAMary Kay OConnor Proc Safety Ctr, College Stn, TX USA
Ade, Nilesh
Perez, Lisa M.
论文数: 0引用数: 0
h-index: 0
机构:
Texas A&M Univ, High Performance Res Comp, College Stn, TX 77843 USAMary Kay OConnor Proc Safety Ctr, College Stn, TX USA
Perez, Lisa M.
Kolis, Stanley
论文数: 0引用数: 0
h-index: 0
机构:
Eli Lilly & Co, Small Mol Design & Dev, Indianapolis, IN 46285 USAMary Kay OConnor Proc Safety Ctr, College Stn, TX USA
Kolis, Stanley
Mashuga, Chad, V
论文数: 0引用数: 0
h-index: 0
机构:
Mary Kay OConnor Proc Safety Ctr, College Stn, TX USA
Texas A&M Univ, Artie McFerrin Dept Chem Engn, College Stn, TX 77843 USAMary Kay OConnor Proc Safety Ctr, College Stn, TX USA