Bidirectional Learning for Offline Model-based Biological Sequence Design

被引:0
|
作者
Chen, Can [1 ,2 ]
Zhang, Yingxue [3 ]
Liu, Xue [1 ]
Coates, Mark [1 ]
机构
[1] McGill Univ, Montreal, PQ, Canada
[2] Mila Quebec AI Inst, Montreal, PQ, Canada
[3] Huawei Noahs Ark Lab, Montreal, PQ, Canada
来源
INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202 | 2023年 / 202卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Offline model-based optimization aims to maximize a black-box objective function with a static dataset of designs and their scores. In this paper, we focus on biological sequence design to maximize some sequence score. A recent approach employs bidirectional learning, combining a forward mapping for exploitation and a backward mapping for constraint, and it relies on the neural tangent kernel (NTK) of an infinitely wide network to build a proxy model. Though effective, the NTK cannot learn features because of its parametrization, and its use prevents the incorporation of powerful pre-trained Language Models (LMs) that can capture the rich biophysical information in millions of biological sequences. We adopt an alternative proxy model, adding a linear head to a pre-trained LM, and propose a linearization scheme. This yields a closed-form loss and also takes into account the biophysical information in the pre-trained LM. In addition, the forward mapping and the backward mapping play different roles and thus deserve different weights during sequence optimization. To achieve this, we train an auxiliary model and leverage its weak supervision signal via a bi-level optimization framework to effectively learn how to balance the two mappings. Further, by extending the framework, we develop the first learning rate adaptation module Adaptive., which is compatible with all gradient-based algorithms for offline model-based optimization. Experimental results on DNA/protein sequence design tasks verify the effectiveness of our algorithm. Our code is available here.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Bidirectional Learning for Offline Infinite-width Model-based Optimization
    Chen, Can
    Zhang, Yingxue
    Fu, Jie
    Liu, Xue
    Coates, Mark
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [2] MOReL: Model-Based Offline Reinforcement Learning
    Kidambi, Rahul
    Rajeswaran, Aravind
    Netrapalli, Praneeth
    Joachims, Thorsten
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [3] Offline Model-based Adaptable Policy Learning
    Chen, Xiong-Hui
    Yu, Yang
    Li, Qingyang
    Luo, Fan-Ming
    Qin, Zhiwei
    Shang, Wenjie
    Ye, Jieping
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [4] Weighted model estimation for offline model-based reinforcement learning
    Hishinuma, Toru
    Senda, Kei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,
  • [5] Offline Reinforcement Learning with Reverse Model-based Imagination
    Wang, Jianhao
    Li, Wenzhe
    Jiang, Haozhe
    Zhu, Guangxiang
    Li, Siyuan
    Zhang, Chongjie
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [6] Offline Model-Based Reinforcement Learning for Tokamak Control
    Char, Ian
    Abbate, Joseph
    Bardoczi, Laszlo
    Boyer, Mark D.
    Chung, Youngseog
    Conlin, Rory
    Erickson, Keith
    Mehta, Viraj
    Richner, Nathan
    Kolemen, Egemen
    Schneider, Jeff
    LEARNING FOR DYNAMICS AND CONTROL CONFERENCE, VOL 211, 2023, 211
  • [7] An Analysis of Offline Model-Based Learning with Action Noise
    Li, Haoya
    Gangwani, Tanmay
    Ying, Lexing
    JOURNAL OF SCIENTIFIC COMPUTING, 2025, 103 (02)
  • [8] Model-Based Offline Reinforcement Learning with Local Misspecification
    Dong, Kefan
    Flet-Berliac, Yannis
    Nie, Allen
    Brunskill, Emma
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 6, 2023, : 7423 - 7431
  • [9] OCEAN-MBRL: Offline Conservative Exploration for Model-Based Offline Reinforcement Learning
    Wu, Fan
    Zhang, Rui
    Yi, Qi
    Gao, Yunkai
    Guo, Jiaming
    Peng, Shaohui
    Lan, Siming
    Han, Husheng
    Pan, Yansong
    Yuan, Kaizhao
    Jin, Pengwei
    Chen, Ruizhi
    Chen, Yunji
    Li, Ling
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 14, 2024, : 15897 - 15905
  • [10] Model-Based Offline Reinforcement Learning for Autonomous Delivery of Guidewire
    Li, Hao
    Zhou, Xiao-Hu
    Xie, Xiao-Liang
    Liu, Shi-Qi
    Feng, Zhen-Qiu
    Gui, Mei-Jiang
    Xiang, Tian-Yu
    Huang, De-Xing
    Hou, Zeng-Guang
    IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, 2024, 6 (03): : 1054 - 1062