Polymeric multilayered planar spring-based hybrid nanogenerator integrated with a self-powered vibration sensor for automotive vehicles IoT applications

被引:4
|
作者
Bhatta, Trilochan [1 ]
Faruk, Omar [1 ]
Islam, M. Robiul [1 ]
Kim, Hong Seok [1 ]
Rana, S. M. Sohel [1 ]
Pradhan, Gagan Bahadur [1 ]
Deo, Akash [1 ]
Kwon, Dae-Sung [2 ]
Yoo, Ilseon [2 ]
Park, Jae Yeong [1 ]
机构
[1] Kwangwoon Univ, Dept Elect Engn, Adv Sensor & Energy Res ASER Lab, 447-1 Wolgye dong, Seoul, South Korea
[2] Hyundai Motor Co, Electromagnet Energy Mat Res Team, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Polymer springs; Automotive-vibration energy harvester; Self-powered vibration sensor; Self-powered IoT; Electromagnetic-triboelectric; TRIBOELECTRIC NANOGENERATOR; ENERGY;
D O I
10.1016/j.nanoen.2024.109793
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The industrial revolution in automobiles has offered large-scale integration of sensors and interconnections to facilitate smooth and safe driving. These interconnections draw significant amounts of electricity from the power backups, hampering the overall energy efficiency. Herein, a polymer-based low-stiffness multiturn planar springassisted hybrid vehicle energy harvesting module (VEHM) equipped with a self-powered triboelectric vibration sensor (SP-TVS) is proposed that allows mechano-electrical conversion and detection of wide-frequency and lowamplitude vehicle induced vibration. The cylindrical design consists of a solenoid coil pair wrapped with fluxconcentrating film (FeSiCr-Ecoflex) and a free-ended Kapton spring holding the magnet (on top) for electromagnetic generator (EMG), while an SP-TVS is realized at the upper end. EMG works effectively in a wide frequency and acceleration range (minimum similar to 0.1 g), delivering peak power of 1 mW at 0.1 g and 30 mW (average power: 7.5 mW) at 1 g acceleration whereas, SP-TVS can monitor vehicle-induced vibration under various road conditions in real-time. Finally, VEHM has been successfully demonstrated as a self-sustainable wireless vehicle indoor environment (such as temperature, humidity, ambient light, UV Index, door state, magnetic field, and induced vibration) monitoring system, thus maximizing the overall battery life and with self-powered vibration sensing functionality for future autonomous vehicles platforms.
引用
收藏
页数:14
相关论文
共 49 条
  • [1] Advances in Marine Self-Powered Vibration Sensor Based on Triboelectric Nanogenerator
    Zou, Yongjiu
    Sun, Minzheng
    Xu, Weipeng
    Zhao, Xin
    Du, Taili
    Sun, Peiting
    Xu, Minyi
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2022, 10 (10)
  • [2] Research on the self-powered downhole vibration sensor based on triboelectric nanogenerator
    Chuan, Wu
    He, Huang
    Shuo, Yang
    Fan, Chenxing
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2021, 235 (22) : 6427 - 6434
  • [3] Modeling of the Hybrid Vibration-based Energy Harvester for Self-Powered IoT Sensor
    Ahmad, M. R.
    Cader, M. S. Muhamed Ali
    Khairuddin, Z. A. Mohammad
    2020 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT AND ADVANCED SYSTEMS (ICIAS), 2021,
  • [4] A self-powered vibration sensor for downhole drilling tools based on hybrid electromagnetic-triboelectric nanogenerator
    Wu, Chuan
    Yang, Shuo
    Wen, Guojun
    Fan, Chenxing
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2021, 92 (05):
  • [5] Self-Powered Downhole Drilling Tools Vibration Sensor Based on Triboelectric Nanogenerator
    Liu, Jinrun
    Huang, He
    Zhou, Qing
    Wu, Chuan
    IEEE SENSORS JOURNAL, 2022, 22 (03) : 2250 - 2258
  • [6] A self-powered vibration sensor based on the coupling of triboelectric nanogenerator and electromagnetic generator
    Fang, Lin
    Zheng, Qiwei
    Hou, Wenchi
    Zheng, Li
    Li, Hexing
    NANO ENERGY, 2022, 97
  • [7] Research on Self-powered Low Frequency Vibration Sensor Based on Triboelectric Nanogenerator
    Wei, Bin
    Pang, Hongchen
    Yang, Fang
    Zhao, Zhiqiang
    Zhong, Yinghao
    Huang, Xili
    Lin, Fang
    Pan, Xinxiang
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2022, 58 (20): : 158 - 165
  • [8] The d-arched piezoelectric-triboelectric hybrid nanogenerator as a self-powered vibration sensor
    Zhu, Jie
    Hou, Xiaojuan
    Niu, Xushi
    Guo, Xuepei
    Zhang, Jing
    He, Jian
    Guo, Tao
    Chou, Xiujian
    Xue, Chenyang
    Zhang, Wendong
    SENSORS AND ACTUATORS A-PHYSICAL, 2017, 263 : 317 - 325
  • [9] Self-Powered Acceleration Sensor Based on Liquid Metal Triboelectric Nanogenerator for Vibration Monitoring
    Zhang, Binbin
    Zhang, Lei
    Deng, Weili
    Jin, Long
    Chun, Fengjun
    Pan, Hong
    Gu, Bingni
    Zhang, Haitao
    Lv, Zekai
    Yang, Weiqing
    Wang, Zhong Lin
    ACS NANO, 2017, 11 (07) : 7440 - 7446
  • [10] An intelligent skin based self-powered finger motion sensor integrated with triboelectric nanogenerator
    Dhakar, Lokesh
    Pitchappa, Prakash
    Tay, Francis Eng Hock
    Lee, Chengkuo
    NANO ENERGY, 2016, 19 : 532 - 540