Learning a Single Convolutional Layer Model for Low Light Image Enhancement

被引:4
|
作者
Zhang, Yuantong [1 ]
Teng, Baoxin [1 ]
Yang, Daiqin [1 ]
Chen, Zhenzhong [1 ]
Ma, Haichuan [2 ]
Li, Gang [2 ]
Ding, Wenpeng [2 ]
机构
[1] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Hubei, Peoples R China
[2] Cloud BU Huawei, Architecture & Technol Innovat Dept, Media Innovat Lab, Shenzhen, Peoples R China
关键词
Lighting; Convolution; Computational modeling; Image enhancement; Training; Technological innovation; Deep learning; Low-light image enhancement; convolutional layer; structural re-parameterization; ILLUMINATION;
D O I
10.1109/TCSVT.2023.3343696
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Low-light image enhancement (LLIE) aims to improve the illuminance of images due to insufficient light exposure. Recently, various lightweight learning-based LLIE methods have been proposed to handle the challenges of unfavorable prevailing low contrast, low brightness, etc. In this paper, we have streamlined the architecture of the network to the utmost degree. By utilizing the effective structural re-parameterization technique, a single convolutional layer model (SCLM) is proposed that provides global low-light enhancement as the coarsely enhanced results. In addition, we introduce a local adaptation module that learns a set of shared parameters to accomplish local illumination correction to address the issue of varied exposure levels in different image regions. Experimental results demonstrate that the proposed method performs favorably against the state-of-the-art LLIE methods in both objective metrics and subjective visual effects. Additionally, our method has fewer parameters and lower inference complexity compared to other learning-based schemes. Code will be made publicly available at the URL https://gitee.com/zhanghahaxixi/SCLM
引用
收藏
页码:5995 / 6008
页数:14
相关论文
共 50 条
  • [1] Low -light image enhancement based on dual -residual convolutional network
    Chen Qing-jiang
    Qu Mei
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2021, 36 (02) : 305 - 316
  • [2] Low Light Image Enhancement by Multispectral Fusion and Convolutional Neural Networks
    Mei, Lin
    Jung, Cheolkon
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 203 - 209
  • [3] LLCNN: A Convolutional Neural Network for Low-light Image Enhancement
    Tao, Li
    Zhu, Chuang
    Xiang, Guoqing
    Li, Yuan
    Jia, Huizhu
    Xie, Xiaodong
    2017 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2017,
  • [4] Convolutional Neural Network-Based Low Light Image Enhancement Method
    Li, M. X.
    Xu, C. J.
    COMPUTER OPTICS, 2025, 49 (02) : 334 - 343
  • [5] Low-Light Image Enhancement Based on Deep Convolutional Neural Network
    Ma Hongqiang
    Ma Shiping
    Xu Yuelei
    Zhu Mingming
    ACTA OPTICA SINICA, 2019, 39 (02)
  • [6] LOW-LIGHT IMAGE ENHANCEMENT USING ASYMMETRIC CONVOLUTIONAL NEURAL NETWORKS
    Liu, Jiajia
    Deng, Zhixiang
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2024, 20 (02): : 479 - 496
  • [7] Low-light image enhancement based on joint convolutional sparse representation
    Zhang Jie
    Zhang Yanhou
    Zhou Pucheng
    Han Yusheng
    Xue Mogen
    FIFTH CONFERENCE ON FRONTIERS IN OPTICAL IMAGING TECHNOLOGY AND APPLICATIONS (FOI 2018), 2018, 10832
  • [8] Low-Light Image Enhancement Based on Deep Convolutional Neural Network
    Ma H.
    Ma S.
    Xu Y.
    Zhu M.
    Guangxue Xuebao/Acta Optica Sinica, 2019, 39 (02):
  • [9] Convolutional neural network-based low light image enhancement method
    Guo, J.
    COMPUTER OPTICS, 2024, 48 (05) : 745 - 752
  • [10] Advanced RetinexNet: A fully convolutional network for low-light image enhancement
    Hai, Jiang
    Hao, Yutong
    Zou, Fengzhu
    Lin, Fang
    Han, Songchen
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2023, 112