Source-free domain adaptation for semantic image segmentation using internal representations

被引:2
|
作者
Stan, Serban [1 ]
Rostami, Mohammad [1 ]
机构
[1] Univ Southern Calif, Dept Comp Sci, Los Angeles, CA 90007 USA
来源
FRONTIERS IN BIG DATA | 2024年 / 7卷
关键词
domain adaptation; Gaussian mixture model (GMM); optimal transport and Wasserstein distances; sliced Wasserstein distance; image segmentation;
D O I
10.3389/fdata.2024.1359317
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Semantic segmentation models trained on annotated data fail to generalize well when the input data distribution changes over extended time period, leading to requiring re-training to maintain performance. Classic unsupervised domain adaptation (UDA) attempts to address a similar problem when there is target domain with no annotated data points through transferring knowledge from a source domain with annotated data. We develop an online UDA algorithm for semantic segmentation of images that improves model generalization on unannotated domains in scenarios where source data access is restricted during adaptation. We perform model adaptation by minimizing the distributional distance between the source latent features and the target features in a shared embedding space. Our solution promotes a shared domain-agnostic latent feature space between the two domains, which allows for classifier generalization on the target dataset. To alleviate the need of access to source samples during adaptation, we approximate the source latent feature distribution via an appropriate surrogate distribution, in this case a Gaussian mixture model (GMM).
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Source-Free Domain Adaptation for Semantic Segmentation
    Liu, Yuang
    Zhang, Wei
    Wang, Jun
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 1215 - 1224
  • [2] Source-free domain adaptation for image segmentation
    Bateson, Mathilde
    Kervadec, Hoel
    Dolz, Jose
    Lombaert, Herve
    Ben Ayed, Ismail
    MEDICAL IMAGE ANALYSIS, 2022, 82
  • [3] Source-Free Domain Adaptation for Point Cloud Semantic Segmentation
    Duan, Jianshe
    Zhang, Yachao
    Qu, Yanyun
    2024 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME 2024, 2024,
  • [4] Source-Free Open Compound Domain Adaptation in Semantic Segmentation
    Zhao, Yuyang
    Zhong, Zhun
    Luo, Zhiming
    Lee, Gim Hee
    Sebe, Nicu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (10) : 7019 - 7032
  • [5] Source-Free Implicit Semantic Augmentation for Domain Adaptation
    Zhang, Zheyuan
    Zhang, Zili
    PRICAI 2022: TRENDS IN ARTIFICIAL INTELLIGENCE, PT II, 2022, 13630 : 17 - 31
  • [6] ADAPTIVE PSEUDO LABELING FOR SOURCE-FREE DOMAIN ADAPTATION IN MEDICAL IMAGE SEGMENTATION
    Li, Chen
    Chen, Wei
    Luo, Xin
    He, Yulin
    Tan, Yusong
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 1091 - 1095
  • [7] SL: Stable Learning in Source-Free Domain Adaptation for Medical Image Segmentation
    Wang, Yan
    Chen, Yixin
    Yang, Tingyang
    Zhu, Haogang
    ELECTRONICS, 2024, 13 (14)
  • [8] Source-Free Domain Adaptation for RGB-D Semantic Segmentation with Vision Transformers
    Rizzoli, Giulia
    Shenaj, Donald
    Zanuttigh, Pietro
    2024 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS, WACVW 2024, 2024, : 607 - 616
  • [9] Generalize then Adapt: Source-Free Domain Adaptive Semantic Segmentation
    Kundu, Jogendra Nath
    Kulkarni, Akshay
    Singh, Amit
    Jampani, Varun
    Babu, R. Venkatesh
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 7026 - 7036
  • [10] A Chebyshev Confidence Guided Source-Free Domain Adaptation Framework for Medical Image Segmentation
    Hu, Jiesi
    Yang, Yanwu
    Guo, Xutao
    Ma, Ting
    Wang, Jinghua
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (09) : 5473 - 5486