Modulatory Effects of Lactobacillus paracasei-Fermented Turmeric on Metabolic Dysregulation and Gut Microbiota in High-Fat Diet-Induced Obesity in Mice

被引:2
|
作者
Lin, Wei-Sheng [1 ,2 ]
Hwang, Siao-En [2 ]
Koh, Yen-Chun [2 ]
Ho, Pin-Yu [2 ]
Pan, Min-Hsiung [2 ,3 ,4 ]
机构
[1] Natl Quemoy Univ, Dept Food Sci, Quemoy 89250, Taiwan
[2] Natl Taiwan Univ, Inst Food Sci & Technol, Taipei 10617, Taiwan
[3] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[4] Asia Univ, Dept Hlth & Nutr Biotechnol, Taichung 41354, Taiwan
关键词
obesity; Lactobacillus paracasei; turmeric; fermented turmeric; gut microbiota; INSULIN-RESISTANCE; LIVER-DISEASE; INHIBITS ADIPOGENESIS; ADIPOCYTES; PRODUCTS; PATHWAY; ACID;
D O I
10.1021/acs.jafc.4c01501
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Turmeric, derived from Curcuma longa, and Lactobacillus paracasei, a lactic acid bacteria, have been studied for their potential antiobesity effects. To date, the antiobesity effects of turmeric fermented with L. paracasei have not been sufficiently investigated. This study was conducted via oral administration of 5% L. paracasei-fermented (FT) and unfermented turmeric (UT) in diet over 16 weeks using high-fat diet (HFD)-induced obese C57BL/6J mice. Results showed that the curcuminoid content of turmeric decreased following fermentation. Furthermore, FT significantly suppressed weight gain and liver and visceral adipose tissue weight and reduced plasma metabolic parameters in both the UT and FT experimental groups. The effects of FT were more noticeable than those of the unfermented form. Moreover, FT downregulated the expression of adipogenesis, lipogenesis, and inflammatory-related protein, but upregulated liver beta-oxidation protein SIRT 1, PPAR alpha, and PGC-1 alpha in perigonadal adipose tissue. Additionally, FT ameliorated insulin resistance by activating insulin receptor pathway protein expressions in visceral adipose tissues. FT also modulated gut microbiota composition, particularly in two beneficial bacteria, Akkermansia muciniphila and Desulfovibrio, as well as two short-chain fatty acid-producing bacteria: Muribaculum intestinale and Deltaproteobacteria. Our findings indicate that the modulation effect of FT may be an important pathway for its antiobesity mechanisms.
引用
收藏
页码:17924 / 17937
页数:14
相关论文
共 50 条
  • [1] Lactobacillus paracasei 24 Attenuates Lipid Accumulation in High-Fat Diet-Induced Obese Mice by Regulating the Gut Microbiota
    Liu, Zhijing
    Zhou, Xuan
    Wang, Wan
    Gu, Liya
    Hu, Chuanbing
    Sun, Hong
    Xu, Cong
    Hou, Juncai
    Jiang, Zhanmei
    Journal of Agricultural and Food Chemistry, 2022, 70 (15): : 4631 - 4643
  • [2] Lacticaseibacillus paracasei K56 Attenuates High-Fat Diet-Induced Obesity by Modulating the Gut Microbiota in Mice
    Miao, Zhonghua
    Zheng, Hanying
    Liu, Wei-Hsien
    Cheng, Ruyue
    Lan, Hui
    Sun, Ting
    Zhao, Wen
    Li, Jinxing
    Shen, Xi
    Li, Hongwei
    Feng, Haotian
    Hung, Wei-Lian
    He, Fang
    PROBIOTICS AND ANTIMICROBIAL PROTEINS, 2023, 15 (04) : 844 - 855
  • [3] Lacticaseibacillus paracasei K56 Attenuates High-Fat Diet-Induced Obesity by Modulating the Gut Microbiota in Mice
    Zhonghua Miao
    Hanying Zheng
    Wei-Hsien Liu
    Ruyue Cheng
    Hui Lan
    Ting Sun
    Wen Zhao
    Jinxing Li
    Xi Shen
    Hongwei Li
    Haotian Feng
    Wei-Lian Hung
    Fang He
    Probiotics and Antimicrobial Proteins, 2023, 15 : 844 - 855
  • [4] Lactobacillus paracasei N1115 attenuates obesity in high-fat diet-induced obese mice
    Sun, Yanan
    Chen, Shanbin
    Renl, Fazheng
    Li, Yixuan
    FOOD SCIENCE & NUTRITION, 2023, 11 (01): : 418 - 427
  • [5] Sciadonic acid attenuates high-fat diet-induced obesity in mice with alterations in the gut microbiota
    Chen, Lin
    Jiang, Qihong
    Jiang, Chenkai
    Lu, Hongling
    Hu, Wenjun
    Yu, Shaofang
    Li, Mingqian
    Tan, Chin Ping
    Feng, Yongcai
    Xiang, Xingwei
    Shen, Guoxin
    FOOD & FUNCTION, 2023, 14 (06) : 2870 - 2880
  • [6] Salidroside protects mice from high-fat diet-induced obesity by modulating the gut microbiota
    Liu, Jiuxi
    Cai, Jiapei
    Zhang, Naisheng
    Tai, Jiandong
    Fan, Peng
    Dong, Xue
    Cao, Yongguo
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2023, 120
  • [7] Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice
    Cani, Patrice D.
    Bibiloni, Rodrigo
    Knauf, Claude
    Neyrinck, Audrey M.
    Neyrinck, Audrey M.
    Delzenne, Nathalle M.
    Burcelin, Remy
    DIABETES, 2008, 57 (06) : 1470 - 1481
  • [8] Lactobacillus paracasei L9 ameliorated obesity-associated metabolic parameters and relevant gut microbiota in mice fed a high-fat diet
    Sun, Nan Ya
    Chen, Shanbin
    Li, Yixuan
    NUTRITION RESEARCH, 2023, 115 : 26 - 37
  • [9] Citrus peel extracts attenuated obesity and modulated gut microbiota in mice with high-fat diet-induced obesity
    Tung, Yen-Chen
    Chang, Wei-Tien
    Li, Shiming
    Wu, Jia-Ching
    Badmeav, Vladimir
    Ho, Chi-Tang
    Pan, Min-Hsiung
    FOOD & FUNCTION, 2018, 9 (06) : 3363 - 3373
  • [10] Puerarin prevents high-fat diet-induced obesity by enriching Akkermansia muciniphila in the gut microbiota of mice
    Wang, Lei
    Wu, Yongzheng
    Zhuang, Lingjia
    Chen, Xiufang
    Min, Haiyan
    Song, Shiyu
    Liang, Qiao
    Li, An-Dong
    Gao, Qian
    PLOS ONE, 2019, 14 (06):