Wet-Processable Binder in Composite Cathode for High Energy Density All-Solid-State Lithium Batteries

被引:7
|
作者
Hong, Seung-Bo [1 ]
Jang, Yoo-Rim [2 ]
Kim, Hun [3 ]
Jung, Yun-Chae [4 ]
Shin, Gyuhwang [1 ]
Hah, Hoe Jin [5 ]
Cho, Woosuk [4 ]
Sun, Yang-Kook [2 ,3 ]
Kim, Dong-Won [1 ,2 ]
机构
[1] Hanyang Univ, Dept Chem Engn, Seoul 04763, South Korea
[2] Hanyang Univ, Dept Battery Engn, Seoul 04763, South Korea
[3] Hanyang Univ, Dept Energy Engn, Seoul 04763, South Korea
[4] Korea Elect Technol Inst, Adv Batteries Res Ctr, Gyeonggi 13509, South Korea
[5] Battery R&D, LG Energy Solut, Seoul 07796, South Korea
关键词
all-solid-state battery; composite cathode; full-concentration gradient cathode; polymer binder; sulfide electrolyte;
D O I
10.1002/aenm.202400802
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sulfide-based all-solid-state lithium batteries (ASSLBs) are potential alternatives to conventional lithium-ion batteries for enhancing energy density and battery safety. However, the industrial sector encounters technical challenges in the fabrication of high-mass-loaded composite cathodes to improve the energy densities of ASSLBs. Thus, the selection of an appropriate binder and cathode active material is very important for achieving a good cycling performance of ASSLBs. In this study, wet-processable poly(ethylene-co-methyl acrylate-co-glycidyl methacrylate) (EMG) binder and full-concentration gradient (FCG) LiNi0.78Co0.10Mn0.12O2 (NCM) cathode active material are employed to fabricate the composite cathode with high active mass loading (21.4 mg cm-2). The EMG binder provided strong binding properties to the cathode constituents and improved the electrical conductivity of the composite cathode. The FCG NCM mitigated the morphology damages caused by volume changes in the cathode active material during cycling. Consequently, the solid-state lithium battery with the composite cathode employing EMG binder and FCG NCM delivered a high discharge capacity of 196.6 mAh g-1 corresponding to an areal capacity of 4.21 mAh cm-2 and showed good capacity retention of 85.1% after 300 cycles at 0.2 C rate and 30 degrees C. The EMG binder provides strong binding among the cathode constituents and improves the electrical conductivity of the composite cathode. The FCG NCM mitigates the morphology damage caused by volume changes during cycling. The solid-state cell assembled with composite cathode employing EMG and FGC NCM delivers a high discharge capacity of 196.6 mAh g-1 (4.21 mAh cm-2) and exhibits good capacity retention. image
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Composite cathode for all-solid-state lithium batteries: Progress and perspective
    Zeng, Zhen
    Cheng, Jun
    Li, Yuanyuan
    Zhang, Hongqiang
    Li, Deping
    Liu, Hongbin
    Ji, Fengjun
    Sun, Qing
    Ci, Lijie
    MATERIALS TODAY PHYSICS, 2023, 32
  • [2] Composite Cathode Design for High-Energy All-Solid-State Lithium Batteries with Long Cycle Life
    Kim, SeYoung
    Cha, Hyungyeon
    Kostecki, Robert
    Chen, Guoying
    ACS ENERGY LETTERS, 2023, 8 (01) : 521 - 528
  • [3] Exploring the Cathode Active Materials for Sulfide-Based All-Solid-State Lithium Batteries with High Energy Density
    Hong, Seung-Bo
    Lee, Young-Jun
    Lee, Han-Jo
    Sim, Hui-Tae
    Lee, Hyobin
    Lee, Yong Min
    Kim, Dong-Won
    SMALL, 2024, 20 (09)
  • [4] Composite solid electrolytes for all-solid-state lithium batteries
    Dirican, Mahmut
    Yan, Chaoyi
    Zhu, Pei
    Zhang, Xiangwu
    MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2019, 136 (27-46): : 27 - 46
  • [5] Cathode-Supported All-Solid-State Lithium-Sulfur Batteries with High Cell-Level Energy Density
    Xu, Ruochen
    Yue, Jie
    Liu, Sufu
    Tu, Jiangping
    Han, Fudong
    Liu, Ping
    Wang, Chunsheng
    ACS ENERGY LETTERS, 2019, 4 (05): : 1073 - +
  • [6] Exploring the use of butadiene rubbers as a binder in composite cathodes for all-solid-state lithium batteries
    Lee, Young -Jun
    Hong, Seung-Bo
    Kim, Dong-Won
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2023, 122 : 341 - 348
  • [7] LiBOB as a cathode additive for all-solid-state lithium sulfur batteries
    Deng, Shuang
    Li, Huiyao
    Zou, Youlan
    Tang, Wenhao
    Deng, Shiyan
    CHEMICAL ENGINEERING SCIENCE, 2025, 307
  • [8] Nickel sulfides as a cathode for all-solid-state ceramic lithium batteries
    Matsumura, Tadaaki
    Nakano, Kazuki
    Kanno, Ryoji
    Hirano, Atsushi
    Imanishi, Nobuyuki
    Takeda, Yasuo
    JOURNAL OF POWER SOURCES, 2007, 174 (02) : 632 - 636
  • [9] Mechanical Investigations of Composite Cathode Degradation in All-Solid-State Batteries
    Farzanian, Shafee
    Vazquez Mercado, Joseph
    Shozib, Imtiaz
    Sivadas, Nikhil
    Lacivita, Valentina
    Wang, Yan
    Tu, Qingsong Howard
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (18) : 9615 - 9623
  • [10] A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries
    Kim, Sangryun
    Oguchi, Hiroyuki
    Toyama, Naoki
    Sato, Toyoto
    Takagi, Shigeyuki
    Otomo, Toshiya
    Arunkumar, Dorai
    Kuwata, Naoaki
    Kawamura, Junichi
    Orimo, Shin-ichi
    NATURE COMMUNICATIONS, 2019, 10 (1)