Barycenters and a law of large numbers in Gromov hyperbolic spaces

被引:0
|
作者
Ohta, Shin-ichi [1 ,2 ]
机构
[1] Osaka Univ, Dept Math, Osaka 5600043, Japan
[2] RIKEN, Ctr Adv Intelligence Project AIP, 1-4-1 Nihonbashi, Tokyo 1030027, Japan
关键词
Gromov hyperbolic space; barycenter; law of large numbers; CONVEX-FUNCTIONS; GRADIENT FLOWS; CAT(1)-SPACES;
D O I
10.4171/RMI/1483
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate barycenters of probability measures on Gromov hyperbolic spaces, toward development of convex optimization in this class of metric spaces. We establish a contraction property (the Wasserstein distance between probability measures provides an upper bound of the distance between their barycenters), a deterministic approximation of barycenters of uniform distributions on finite points, and a kind of law of large numbers. These generalize the corresponding results on CAT(0)-spaces, up to additional terms depending on the hyperbolicity constant.
引用
收藏
页码:1185 / 1206
页数:22
相关论文
共 50 条
  • [1] Gromov hyperbolic spaces
    Väisälä, J
    EXPOSITIONES MATHEMATICAE, 2005, 23 (03) : 187 - 231
  • [2] LARGE DEVIATIONS FOR RANDOM WALKS ON GROMOV-HYPERBOLIC SPACES
    Boulanger, Adrien
    Mathieu, Pierre
    Sert, Cagri
    Sisto, Alessandro
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2023, 56 (03): : 885 - 944
  • [3] Embeddings of Gromov hyperbolic spaces
    M. Bonk
    O. Schramm
    Geometric & Functional Analysis GAFA, 2000, 10 : 266 - 306
  • [4] Embeddings of Gromov hyperbolic spaces
    Bonk, M
    Schramm, O
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (02) : 266 - 306
  • [5] Uniformizing gromov hyperbolic spaces - Introduction
    Bonk, M
    Heinonen, J
    Koskela, P
    ASTERISQUE, 2001, (270) : 1 - +
  • [6] Boundary rigidity of Gromov hyperbolic spaces
    Liang, Hao
    Zhou, Qingshan
    GEOMETRIAE DEDICATA, 2024, 218 (05)
  • [7] Sphericalizations and applications in Gromov hyperbolic spaces
    Zhou, Qingshan
    Li, Yaxiang
    Li, Xining
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 509 (01)
  • [8] Potential Theory on Gromov Hyperbolic Spaces
    Kemper, Matthias
    Lohkamp, Joachim
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2022, 10 (01): : 394 - 431
  • [9] Properties of sets of isometrics of Gromov hyperbolic spaces
    Oregon-Reyes, Eduardo
    GROUPS GEOMETRY AND DYNAMICS, 2018, 12 (03) : 889 - 910
  • [10] Metric transforms yielding Gromov hyperbolic spaces
    George Dragomir
    Andrew Nicas
    Geometriae Dedicata, 2019, 200 : 331 - 350