A novel swirl burner with coal co-firing ammonia: Effect of extension length of the dual-channel ammonia pipe on combustion and NOx formation

被引:7
|
作者
Ma, Lun [1 ]
Li, Kaiyuan [1 ]
Fang, Qingyan [2 ]
Chen, Gang [2 ]
Zhang, Cheng [2 ]
机构
[1] Wuhan Univ Technol, Sch Safety Sci & Emergency Management, Wuhan 430070, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, State Key Lab Coal Combust, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Coal/ammonia co -firing technology; Novel swirl burner; pipe; Carbon content in fly ash; Extension length of the dual-channel ammonia; NOx;
D O I
10.1016/j.ijhydene.2024.06.293
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The coal/ammonia co-firing technology for thermal power generation is a feasible method to effectively reduce CO2 emissions. However, the easy formation of NOx is one of the challenges faced by this technology owing to the high nitrogen content in ammonia. This study proposes a novel swirl burner with a scalable dual-channel ammonia pipe, and evaluates the combustion and NOx formation under different extension lengths of the dual-channel ammonia pipe (i.e., 0 m, 0.4 m, 0.8 m, 1.0 m, 1.2 m). The results show that the extension length of the dual-channel ammonia pipe significantly affects the flow, combustion, and NOx formation. When the extension length of the dual-channel ammonia pipe is above 0.8 m, the ammonia stream can completely penetrate the internal recirculation zone into the high CO environment, which contributes to promoting the ammonia pyrolysis and inhibiting the ammonia oxidation to form NOx. NOx emissions significantly decrease from 846 ppm to 146 ppm as the extension length of the dual-channel ammonia pipe from 0 m to 0.8 m, but change slightly as further increases from 0.8 m to 1.2 m. The carbon content in fly ash decreases from 4.53% to 3.40% as the extension length of the dual-channel ammonia pipe increases from 0 m to 1.0 m. Still, it increases from 3.40% to 3.70% as the extension length of the dual-channel ammonia pipe rises to 1.2 m. Overall, it is reasonable to set the extension length of the dual-channel ammonia pipe at 1.0 m in this studied condition, which can obtain low NOx and low carbon content in fly ash.
引用
收藏
页码:344 / 352
页数:9
相关论文
共 50 条
  • [1] A novel low-NOx swirl burner with coal-ammonia co-firing: Effect of ammonia ratio in the dual channels on combustion and NOx formation
    Ma, Lun
    Fang, Qingyan
    Zhang, Cheng
    Chen, Gang
    Li, Kaiyuan
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 191 : 85 - 93
  • [2] Numerical investigation on ammonia co-firing in a pulverized coal combustion facility: Effect of ammonia co-firing ratio
    Zhang, Juwei
    Ito, Takamasa
    Ishii, Hiroki
    Ishihara, Sakiko
    Fujimori, Toshiro
    FUEL, 2020, 267
  • [3] Study on the NOx formation of propane/ammonia co-combustion with a swirl burner
    Wu, Yong
    Gu, Mingyan
    Li, Shuanglong
    Wei, Xin
    Huang, Xiangyong
    Lin, Qifu
    APPLICATIONS IN ENERGY AND COMBUSTION SCIENCE, 2024, 17
  • [4] Numerical investigation of ammonia/coal co-combustion in a low NOx swirl burner
    Liu, Mingyu
    Chen, Sheng
    Zhu, Hongwei
    Zhou, Zijian
    Xu, Jingying
    ENERGY, 2023, 282
  • [5] Effect of ammonia co-firing ratio on the formation of condensable particulate matter in pollutants during coal/ammonia co-combustion
    Zhai, Yunfei
    Liu, Xiaowei
    Zhou, Zijian
    Zhang, Aoyang
    Xu, Minghou
    FUEL, 2024, 356
  • [6] Effect of combustion temperature on the unburnt carbon during ammonia co-firing with coal combustion
    Mathaba, Machodi
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [7] A direct numerical simulation study on combustion and NO formation of coal/ammonia co-firing flames
    Xing, Jiangkuan
    Luo, Kun
    Kurose, Ryoichi
    ADVANCED POWDER TECHNOLOGY, 2024, 35 (06)
  • [8] Mechanistic study on the effect of ammonia co-firing with pulverized coal on NO formation and reduction
    Jiao, Anyao
    Xu, Hongtao
    Liu, Feng
    Liao, Xiaowei
    Liu, Jiaxun
    Jiang, Xiumin
    CHEMICAL ENGINEERING SCIENCE, 2023, 282
  • [9] Investigating combustion efficiency and NOx emission reduction in fluidized bed ammonia-coal co-firing
    Li, Tianxin
    Li, Lin
    Liu, Chong
    Liu, Heng
    Sun, Guang
    Ding, Ning
    Lu, Dennis
    Duan, Lunbo
    COMBUSTION AND FLAME, 2024, 270
  • [10] Experimental study and kinetic analysis of the impact of ammonia co-firing ratio on products formation characteristics in ammonia/coal co-firing process
    Wang, Xin
    Fan, Weidong
    Chen, Jun
    Feng, Guanyu
    Zhang, Xiang
    FUEL, 2022, 329