Metrics of Motor Learning for Analyzing Movement Mapping in Virtual Reality

被引:1
|
作者
Yu, Difeng [1 ]
Cibulskis, Mantas [1 ]
Mortensen, Erik Skjoldan [1 ]
Christensen, Mark Schram [1 ]
Bergstrom, Joanna [1 ]
机构
[1] Univ Copenhagen, Copenhagen, Denmark
关键词
Interaction techniques; visual-motor mismatches; motor adaptation; beyond-real interactions; VISUOMOTOR TRANSFORMATIONS; STROKE; ADAPTATION; MANIPULATION; AMPLITUDE; SELECTION; THERAPY; FINGERS; ERROR; LAW;
D O I
10.1145/3613904.3642354
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Virtual reality (VR) techniques can modify how physical body movements are mapped to the virtual body. However, it is unclear how users learn such mappings and, therefore, how the learning process may impede interaction. To understand and quantify the learning of the techniques, we design new metrics explicitly for VR interactions based on the motor learning literature. We evaluate the metrics in three object selection and manipulation tasks, employing linear-translational and nonlinear-rotational gains and fingerto-arm mapping. The study shows that the metrics demonstrate known characteristics of motor learning similar to task completion time, typically with faster initial learning followed by more gradual improvements over time. More importantly, the metrics capture learning behaviors that task completion time does not. We discuss how the metrics can provide new insights into how users adapt to movement mappings and how they can help analyze and improve such techniques.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] SnapMove: Movement Projection Mapping in Virtual Reality
    Cohn, Brian A.
    Maselli, Antonella
    Ofek, Eyal
    Gonzalez-Franco, Mar
    2020 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND VIRTUAL REALITY (AIVR 2020), 2020, : 74 - 81
  • [2] Designing and Analyzing In-Place Motor Tasks in Virtual Reality With Goal Functions
    Carrera, Robert M.
    Tao, Chenxi
    Agrawal, Sunil K.
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2024, 32 : 2928 - 2938
  • [3] Training in virtual reality enables learning of a complex sports movement
    Pastel, Stefan
    Petri, K.
    Chen, C. H.
    Caceres, Ana Milena Wiegand
    Stirnatis, M.
    Nuebel, C.
    Schlotter, L.
    Witte, K.
    VIRTUAL REALITY, 2023, 27 (02) : 523 - 540
  • [4] Training in virtual reality enables learning of a complex sports movement
    Stefan Pastel
    K. Petri
    C. H. Chen
    Ana Milena Wiegand Cáceres
    M. Stirnatis
    C. Nübel
    L. Schlotter
    K. Witte
    Virtual Reality, 2023, 27 : 523 - 540
  • [5] Supervised learning for analysing movement patterns in a virtual reality experiment
    Vogel, Frederike
    Vahle, Nils M. M.
    Gertheiss, Jan
    Tomasik, Martin J. J.
    ROYAL SOCIETY OPEN SCIENCE, 2022, 9 (04):
  • [6] Analyzing and Optimizing Virtual Reality Classroom Scenarios: A Deep Learning Approach
    Jiang, Lin
    Lu, Xiao
    TRAITEMENT DU SIGNAL, 2023, 40 (06) : 2553 - 2563
  • [7] Analyzing the Use of Heuristics in a Virtual Reality Learning Context: A Literature Review
    Mohammad, Abdulghafour
    Pedersen, Line
    INFORMATICS-BASEL, 2022, 9 (03):
  • [8] Virtual Reality Practice Facilities Positive Transfer of Motor Learning
    Porter, Jared
    Cochran, Koleton
    JOURNAL OF SPORT & EXERCISE PSYCHOLOGY, 2019, 41 : S45 - S46
  • [9] Using virtual reality to study spatial mapping and threat learning
    Marino, Claire E.
    Rjabtsenkov, Pavel
    Sharp, Caitlin
    Ali, Zonia
    Pineda, Evelyn
    Bavdekar, Shreya Y.
    Garg, Tanya
    Jordan, Kendal
    Halvorsen, Mary
    Aponte, Carlos
    Blue, Julie
    Zhu, Xi
    Suarez-Jimenez, Benjamin
    NPJ SCIENCE OF LEARNING, 2025, 10 (01)
  • [10] Examining the Fine Motor Control Ability of Linear Hand Movement in Virtual Reality
    Yi, Xin
    Wang, Xueyang
    Li, Jiaqi
    Li, Hewu
    2023 IEEE CONFERENCE VIRTUAL REALITY AND 3D USER INTERFACES, VR, 2023, : 427 - 437