Artificial intelligence (AI) technology has become integral in the realm of medicine and healthcare, particularly in human activity recognition (HAR) applications such as fitness and rehabilitation tracking. This study introduces a robust coupling analysis framework that integrates four AI-enabled models, combining both machine learning (ML) and deep learning (DL) approaches to evaluate their effectiveness in HAR. The analytical dataset comprises 561 features sourced from the UCI-HAR database, forming the foundation for training the models. Additionally, the MHEALTH database is employed to replicate the modeling process for comparative purposes, while inclusion of the WISDM database, renowned for its challenging features, supports the framework's resilience and adaptability. The ML-based models employ the methodologies including adaptive neuro-fuzzy inference system (ANFIS), support vector machine (SVM), and random forest (RF), for data training. In contrast, a DL-based model utilizes onedimensional convolution neural network (1dCNN) to automate feature extraction. Furthermore, the recursive feature elimination (RFE) algorithm, which drives an ML-based estimator to eliminate low-participation features, helps identify the optimal features for enhancing model performance. The best accuracies of the ANFIS, SVM, RF, and 1dCNN models with meticulous featuring process achieve around 90%, 96%, 91%, and 93%, respectively. Comparative analysis using the MHEALTH dataset showcases the 1dCNN model's remarkable perfect accuracy (100%), while the RF, SVM, and ANFIS models equipped with selected features achieve accuracies of 99.8%, 99.7%, and 96.5%, respectively. Finally, when applied to the WISDM dataset, the DL-based and ML-based models attain accuracies of 91.4% and 87.3%, respectively, aligning with prior research findings. In conclusion, the proposed framework yields HAR models with commendable performance metrics, exhibiting its suitability for integration into the healthcare services system through AI-driven applications.