Advanced cyclic constitutive model and parameter calibration method for austenitic stainless steel

被引:2
|
作者
Ning, Keyang [1 ,2 ]
Yang, Lu [1 ]
Zhao, Ou [3 ]
机构
[1] Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing, Peoples R China
[2] Hong Kong Polytech Univ, Chinese Natl Engn Res Ctr Steel Construct, Hong Kong Branch, Hong Kong, Peoples R China
[3] Nanyang Technol Univ, Sch Civil & Environm Engn, Singapore, Singapore
基金
中国国家自然科学基金;
关键词
Stainless steel; Cyclic constitutive model; Calibration method; Genetic algorithm; Numerical simulation; HYSTERETIC BEHAVIOR;
D O I
10.1016/j.jcsr.2024.108981
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Austenitic stainless steel is recognized for its potential in improving structural seismic resistance due to its exceptional ductility. This study seeks to analyse the material characteristics and cyclic constitutive model of austenitic stainless steel under cyclic loading using a combination of experiments and numerical studies. The primary goal is to enhance the precision of numerical simulations predicting the seismic performance of stainless steel and to minimize the costs associated with calibrating the parameters of the cyclic constitutive model. By conducting cyclic loading experiments on stainless steel with different plate thicknesses, the hysteresis curves under different loading protocols were obtained. The loading protocol significantly influences the cyclic hardening behaviour of stainless steel. To calibrate material parameters in the Chaboche model more effectively, a new parameter calibration method based on genetic algorithm optimization is proposed. Additionally, a method is proposed to calibrate the material parameters of the Hu model by utilizing the monotonic tensile stress-strain curve of austenitic stainless steel, which provides a new material model option for the numerical simulation of stainless steel seismic performance. The applicability of the Chaboche model and the Hu model in numerical simulations of stainless steel members is then verified and compared using existing seismic performance test results. The findings indicate that the Hu model offers more accurate numerical simulations of cyclic loading on austenitic stainless steel members compared to the Chaboche model.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Study on constitutive model of austenitic stainless steel and duplex stainless steel under cyclic loading
    Chang X.
    Yang L.
    Wang M.
    Yin F.
    Gongcheng Lixue/Engineering Mechanics, 2019, 36 (05): : 137 - 147
  • [2] CALIBRATION OF CYCLIC CONSTITUTIVE MODEL OF STAINLESS-CLAD BIMETALLIC STEEL
    Zhu, Juncheng
    Ban, Huiyong
    Zhang, Yong
    Shi, Gang
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON STEEL AND ALUMINIUM STRUCTURES (ICSAS19), 2019, : 1293 - 1298
  • [3] A new constitutive model for nitrogen austenitic stainless steel
    Fréchard, S
    Lichtenberger, A
    Rondot, F
    Faderl, N
    Redjaïmia, A
    Adoum, M
    JOURNAL DE PHYSIQUE IV, 2003, 110 : 9 - 14
  • [4] A macroscopic constitutive model for a metastable austenitic stainless steel
    Post, J.
    Datta, K.
    Beyer, J.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 485 (1-2): : 290 - 298
  • [5] Study on hysteretic constitutive model of austenitic stainless steel
    School of Civil Engineering, Beijing Jiaotong University, Beijing
    100044, China
    不详
    100084, China
    Gongcheng Lixue, 11 (107-114):
  • [6] Relationship between phenomenological constitutive model and dislocation structure in cyclic plasticity of austenitic stainless steel
    Mayama, Tsuyoshi
    Sasakib, Katsuhiko
    Narita, Yoshihiro
    Engineering Plasticity and Its Applications from Nanoscale to Macroscale, Pts 1 and 2, 2007, 340-341 : 871 - 876
  • [7] Simplified constitutive model of austenitic stainless steel at high temperatures
    Fan, Shenggang
    Zheng, Xingyang
    Zheng, Jiacheng
    Liu, Meijing
    Dong, Daoyang
    FIRE SAFETY JOURNAL, 2024, 142
  • [8] A new constitutive model of austenitic stainless steel for cryogenic applications
    Lee, Kyung Jun
    Chun, Min Sung
    Kim, Myung Hyun
    Lee, Jae Myung
    COMPUTATIONAL MATERIALS SCIENCE, 2009, 46 (04) : 1152 - 1162
  • [9] Constitutive Model of the Surface Roughening Behavior of Austenitic Stainless Steel
    Aziz, Abdul
    Yang, Ming
    Shimizu, Tetsuhide
    Furushima, Tsuyoshi
    MATERIALS, 2022, 15 (12)
  • [10] Development of inelastic constitutive model for austenitic stainless steel for design use
    Takahashi, Yukio
    Shibamoto, Hiroshi
    Inoue, Kazuhiko
    NUCLEAR ENGINEERING AND DESIGN, 2008, 238 (02) : 368 - 379