THERMAL ANALYSIS OF THERMOSYPHON FOR WASTE HEAT RECOVERY FROM AUTO EXHAUST USING LIMITED FLUID CHARGE

被引:0
|
作者
Xiao, Bin [1 ]
机构
[1] Texas State Univ, 601 Univ Dr, San Marcos, TX 78666 USA
关键词
Thermosyphon; Heat Recovery System; Auto Exhaust; Parametric Effect; PERFORMANCE; EXCHANGER;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
An experimental investigation was carried out to analyze the thermal performance of a thermosyphon that recovers waste heat from automobile exhaust using a limited fluid charge in this study. The thermosyphon was constructed from Inconel alloy 625. The outer diameter of the thermosyphon measures 27 mm, with a thickness of 2.6 mm, and an overall length of 483 mm, which includes a 180-mm evaporator, a 70-mm adiabatic section, a 223-mm condenser, and a 97-mm finned exchanger. The study involved directing exhaust gas onto the evaporator end cap at a flow rate ranging from 0-10 g/sec, with temperatures varying from 300-900 degrees C. The impact of three parameters, namely the inclination angle (ranging from 5 degrees-45 degrees), water mass (ranging from 2 g-5.3 g), and the amount of non-condensable gas Argon (ranging from 0 g-0.6 g), were analyzed to determine their effects on the thermal performance of the thermosyphon. Based on the experimental results, it was observed that when the thermosyphon contained 3 g of water and 0.0564g of argon, the condenser achieved a maximum temperature of approximately 200 degrees C. The optimal fuel loading rate for the thermosyphon lies within the range of 0.2 g/s to 0.7 g/s. Furthermore, outer wall temperatures of the thermosyphon increase as inclination angles increase due to the explicit expansion of the actual heating area within the evaporation section of the thermosyphon, accompanied by an augmented gravitational component of the water flux. An increase in the quantity of non-condensable gas (NCG) can diminish temperature gradients on the outer wall of the thermosyphon, leading to a reduction in the thermosyphon's performance. The insulation applied at the adiabatic section proved effective in increasing temperature gradients on the outer wall of the thermosyphon and thereby enhancing the performance of the thermosyphon. With an increase in the water charge within the thermosyphon, heat transfer rates from the exhaust to the thermosyphon and from the thermosyphon to the fuel increase.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Heat Recovery from Automotive Exhaust Using Heat Pipes with Limited Fluid Charge
    Xiao, Bin
    FRONTIERS IN HEAT AND MASS TRANSFER, 2024, 22 (01): : 35 - 48
  • [2] Theoretical thermal analysis of heat recovery by two phase closed Thermosyphon from engine exhaust
    Yogita Umesh Yerne
    Siddappa Sharanappa Bhusnoor
    Heat and Mass Transfer, 2019, 55 : 3211 - 3221
  • [3] Theoretical thermal analysis of heat recovery by two phase closed Thermosyphon from engine exhaust
    Yerne, Yogita Umesh
    Bhusnoor, Siddappa Sharanappa
    HEAT AND MASS TRANSFER, 2019, 55 (11) : 3211 - 3221
  • [4] Refrigeration using Waste Heat Recovery from Exhaust Gas of Engine
    Babu, S.
    Franklin, G.
    Kumar, Nirmal T., V
    Aswin, Kasi K.
    PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON TECHNOLOGICAL ADVANCEMENTS IN POWER AND ENERGY (TAP ENERGY): EXPLORING ENERGY SOLUTIONS FOR AN INTELLIGENT POWER GRID, 2017,
  • [5] Energy conservation by waste heat recovery in industry using thermosyphon heat exchangers
    Noie, SH
    Lotfi, M
    Saghatoleslami, N
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, 2004, 28 (B6): : 707 - 712
  • [6] Analysis of vehicle exhaust waste heat recovery potential using a Rankine cycle
    Domingues, Antonio
    Santos, Helder
    Costa, Mario
    ENERGY, 2013, 49 : 71 - 85
  • [7] Waste heat recovery from the exhaust of a diesel generator using Rankine Cycle
    Hossain, Shekh Nisar
    Bari, Saiful
    ENERGY CONVERSION AND MANAGEMENT, 2013, 75 : 141 - 151
  • [8] Thermal performance of a two-phase closed thermosyphon for waste heat recovery system
    Kannan M.
    Natarajan E.
    Journal of Applied Sciences, 2010, 10 (05) : 413 - 418
  • [9] WASTE HEAT RECOVERY FROM THE EXHAUST OF A DIESEL GENERATOR USING SHELL AND TUBE HEAT EXCHANGER
    Hossain, Shekh N.
    Bari, Saiful
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2013, VOL 6A, 2014,
  • [10] Experimental analysis of a rotary heat exchanger for waste heat recovery from the exhaust gas of dryer
    Akbari, Amirhossein
    Kouravand, Shahriar
    Chegini, Gholamreza
    APPLIED THERMAL ENGINEERING, 2018, 138 : 668 - 674